<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

高磷鮞狀鐵礦直接還原?磁選提鐵降磷擴大試驗研究

吳世超 孫體昌 寇玨 李小輝

吳世超, 孫體昌, 寇玨, 李小輝. 高磷鮞狀鐵礦直接還原?磁選提鐵降磷擴大試驗研究[J]. 工程科學學報, 2022, 44(5): 849-856. doi: 10.13374/j.issn2095-9389.2020.11.29.002
引用本文: 吳世超, 孫體昌, 寇玨, 李小輝. 高磷鮞狀鐵礦直接還原?磁選提鐵降磷擴大試驗研究[J]. 工程科學學報, 2022, 44(5): 849-856. doi: 10.13374/j.issn2095-9389.2020.11.29.002
WU Shi-chao, SUN Ti-chang, KOU Jue, LI Xiao-hui. Pilot study of high-phosphorus oolitic iron ore for iron recovery and dephosphorization by direct reduction–magnetic separation[J]. Chinese Journal of Engineering, 2022, 44(5): 849-856. doi: 10.13374/j.issn2095-9389.2020.11.29.002
Citation: WU Shi-chao, SUN Ti-chang, KOU Jue, LI Xiao-hui. Pilot study of high-phosphorus oolitic iron ore for iron recovery and dephosphorization by direct reduction–magnetic separation[J]. Chinese Journal of Engineering, 2022, 44(5): 849-856. doi: 10.13374/j.issn2095-9389.2020.11.29.002

高磷鮞狀鐵礦直接還原?磁選提鐵降磷擴大試驗研究

doi: 10.13374/j.issn2095-9389.2020.11.29.002
基金項目: 國家重點研發計劃資助項目(2021YFC2902404);國家自然科學基金資助項目(51874017)
詳細信息
    通訊作者:

    E-mail: suntichang@163.com

  • 中圖分類號: TD925

Pilot study of high-phosphorus oolitic iron ore for iron recovery and dephosphorization by direct reduction–magnetic separation

More Information
  • 摘要: 為給回轉窯工業試驗提供參數,以小型試驗最佳結果為基礎,進行了高磷鮞狀鐵礦煤基直接還原?磁選提鐵降磷擴大試驗。結果表明,在最佳的條件下可獲得鐵品位94.17%、鐵回收率77.47%以及磷質量分數0.08%的粉末還原鐵,推薦的回轉窯工業試驗初始條件為:石灰石用量(質量分數)28%、無煙煤用量(質量分數)16%、還原溫度1300 ℃,還原時間3 h。采用XRD以及SEM-EDS研究了無煙煤的作用機理,發現無煙煤用量增加,促進了浮氏體、鎂鐵尖晶石的還原以及鐵顆粒長大,從而提高了鐵的回收效果,但過多的無煙煤通過增強還原氣氛及其帶入的灰分消耗了石灰石,使鐵礦物中的磷以及磷灰石還原成單質磷并與鐵顆粒形成鐵磷合金。

     

  • 圖  1  試樣的XRD譜圖

    Figure  1.  X-ray diffraction pattern of the sample

    圖  2  還原焙燒?磁選工藝試驗程序

    Figure  2.  Experimental procedure for the reduction roasting–magnetic separation process

    圖  3  (a)反應(1)~(9)的ΔGT的關系;(b) 鐵、磷礦物還原與C氣化的平衡圖

    Figure  3.  (a) Relationship between ΔG and T of reactions (1)–(9); (b) equilibrium diagram of iron and phosphorus mineral reduction and carbon gasification

    圖  4  無煙煤用量對粉末還原鐵指標的影響

    Figure  4.  Effect of anthracite dosages on the indices of powdered reduced iron

    圖  5  還原溫度對粉末還原鐵指標的影響

    Figure  5.  Effect of reduction temperature on the indices of powdered reduced iron

    圖  6  還原時間對粉末還原鐵指標的影響

    Figure  6.  Effect of reduction time on the indices of powdered reduced iron

    圖  7  不同無煙煤用量下焙燒礦的XRD圖譜

    Figure  7.  X-ray diffraction patterns of roasted ores with different anthracite dosages

    圖  8  不同無煙煤用量下焙燒礦的SEM圖和EDS分析。(a)16%;(b)18%;(c)20%;(d)圖(a)中點1的能譜圖;(e)圖(b)中點2的能譜圖;(f)圖(c)中點3的能譜圖

    Figure  8.  SEM images and EDS analyses of roasted ores with different anthracite dosages: (a) 16%; (b) 18%; (c) 20%; (d) energy spectrum of point 1 in Fig.(a); (e) energy spectrum of point 2 in Fig.(b); (f) energy spectrum of point 3 in Figs.(c)

    圖  9  不同無煙煤用量下磷的遷移行為

    Figure  9.  Migration behavior of phosphorus under different anthracite dosages

    表  1  試樣的化學成分(質量分數)

    Table  1.   Chemical composition of the sample %

    TFeSiO2Al2O3CaOMgOK2OPSMnOLOI
    55.656.714.802.130.370.0340.560.0160.224.93
    下載: 導出CSV

    表  2  試樣中鐵的物相分析

    Table  2.   Distributions of iron in the mineral phases of the sample

    PhaseMass fraction of minerals /
    %
    Distribution of iron in minerals/%
    Magnetite30.1254.29
    Martite11.4420.73
    Hematite13.4324.14
    Siderite0.430.77
    Ferrosilite0.020.03
    Iron sulfide0.020.04
    Total55.55100
    下載: 導出CSV

    表  3  試樣中磷的物相分析

    Table  3.   Distributions of phosphorous in the mineral phases of the sample

    PhaseMass fraction of minerals /%Distribution of iron in minerals/%
    Apatite0.2950.88
    Phosphorous in the iron-bearing phase0.2442.10
    Others0.037.02
    Total0.56100
    下載: 導出CSV

    表  4  粉末還原鐵的化學組成(質量分數)

    Table  4.   Chemical compositions of the powdered reduced iron %

    FeMFePCaOSiO2Al2O3MgOMnOCS
    94.1792.270.0801.481.130.640.120.0460.490.02
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Wu S C, Li Z Y, Sun T C, et al. Effect of additives on iron recovery and dephosphorization by reduction roasting–magnetic separation of refractory high-phosphorus iron ore. Int J Miner Metall Mater, 2021, 28(12): 1908 doi: 10.1007/s12613-021-2329-8
    [2] Bao Q P, Guo L, Guo Z C. A novel direct reduction-flash smelting separation process of treating high phosphorous iron ore fines. Powder Technol, 2021, 377: 149 doi: 10.1016/j.powtec.2020.08.066
    [3] Zhou W T, Han Y X, Sun Y S, et al. Strengthening iron enrichment and dephosphorization of high-phosphorus oolitic hematite using high-temperature pretreatment. Int J Miner Metall Mater, 2020, 27(4): 443 doi: 10.1007/s12613-019-1897-3
    [4] Tang H Q, Qi T F, Qin Y Q. Production of low-phosphorus molten iron from high-phosphorus oolitic hematite using biomass char. JOM, 2015, 67(9): 1956 doi: 10.1007/s11837-015-1541-2
    [5] Quast K. A review on the characterisation and processing of oolitic iron ores. Miner Eng, 2018, 126: 89 doi: 10.1016/j.mineng.2018.06.018
    [6] Zhu D Q, Chun T J, Pan J, et al. Upgrading and dephosphorization of Western Australian iron ore using reduction roasting by adding sodium carbonate. Int J Miner Metall Mater, 2013, 20(6): 505 doi: 10.1007/s12613-013-0758-8
    [7] Yu W, Sun T C, Kou J, et al. The function of Ca(OH)2 and Na2CO3 as additive on the reduction of high-phosphorus oolitic hematite-coal mixed pellets. ISIJ Int, 2013, 53(3): 427 doi: 10.2355/isijinternational.53.427
    [8] Li G H, Zhang S H, Rao M J, et al. Effects of sodium salts on reduction roasting and Fe-P separation of high-phosphorus oolitic hematite ore. Int J Miner Process, 2013, 124: 26 doi: 10.1016/j.minpro.2013.07.006
    [9] Rao M J, Ouyang C Z, Li G H, et al. Behavior of phosphorus during the carbothermic reduction of phosphorus-rich oolitic hematite ore in the presence of Na2SO4. Int J Miner Process, 2015, 143: 72 doi: 10.1016/j.minpro.2015.09.002
    [10] Li Y L, Sun T C, Xu C Y, et al. New dephosphorizing agent for phosphorus removal from high-phosphorus oolitic hematite ore in direct reduction roasting. J Central South Univ (Sci Technol), 2012, 43(3): 827

    李永利, 孫體昌, 徐承焱, 等. 高磷鮞狀赤鐵礦直接還原同步脫磷新脫磷劑. 中南大學學報(自然科學版), 2012, 43(3):827
    [11] Xu C Y, Sun T C, Qi C Y, et al. Effects of reductants on direct reduction and synchronous dephosphorization of high-phosphorous oolitic hematite. Chin J Nonferrous Met, 2011, 21(3): 680

    徐承焱, 孫體昌, 祁超英, 等. 還原劑對高磷鮞狀赤鐵礦直接還原同步脫磷的影響. 中國有色金屬學報, 2011, 21(3):680
    [12] Yu W, Tang Q Y, Chen J A, et al. Thermodynamic analysis of the carbothermic reduction of a high-phosphorus oolitic iron ore by FactSage. Int J Miner Metall Mater, 2016, 23(10): 1126 doi: 10.1007/s12613-016-1331-z
    [13] Zhang Y Y, Xue Q G, Wang G, et al. Phosphorus-containing mineral evolution and thermodynamics of phosphorus vaporization during carbothermal reduction of high-phosphorus iron ore. Metals, 2018, 8(6): 451 doi: 10.3390/met8060451
    [14] Sun Y S, Han Y X, Wei X C, et al. Non-isothermal reduction kinetics of oolitic iron ore in ore/coal mixture. J Therm Anal Calorim, 2016, 123(1): 703 doi: 10.1007/s10973-015-4863-y
    [15] Sun Y S, Han Y X, Gao P, et al. Thermogravimetric study of coal-based reduction of oolitic iron ore: Kinetics and mechanisms. Int J Miner Process, 2015, 143: 87 doi: 10.1016/j.minpro.2015.09.005
    [16] Cha J W, Kim D Y, Jung S M. Distribution behavior of phosphorus and metallization of iron oxide in carbothermic reduction of high-phosphorus iron ore. Metall Mater Trans B, 2015, 46(5): 2165 doi: 10.1007/s11663-015-0399-6
    [17] Sun Y S, Han Y X, Gao P, et al. Distribution behavior of phosphorus in the coal-based reduction of high-phosphorus-content oolitic iron ore. Int J Miner Metall Mater, 2014, 21(4): 331 doi: 10.1007/s12613-014-0913-x
    [18] Li Y F, Han Y X, Sun Y S, et al. Growth behavior and size characterization of metallic iron particles in coal-based reduction of oolitic hematite–coal composite briquettes. Minerals, 2018, 8(5): 177 doi: 10.3390/min8050177
    [19] Sun Y S, Han Y X, Li Y F, et al. Formation and characterization of metallic iron grains in coal-based reduction of oolitic iron ore. Int J Miner Metall Mater, 2017, 24(2): 123 doi: 10.1007/s12613-017-1386-5
    [20] Hu J G, Wu M Q, Mao Y L. Latest development of direct reduction processes of iron ores. Res Iron Steel, 2006, 34(2): 53 doi: 10.3969/j.issn.1001-1447.2006.02.014

    胡俊鴿, 吳美慶, 毛艷麗. 直接還原煉鐵技術的最新發展. 鋼鐵研究, 2006, 34(2):53 doi: 10.3969/j.issn.1001-1447.2006.02.014
    [21] Cao Z C, Sun T C, Xue X, et al. Iron recovery from discarded copper slag in a RHF direct reduction and subsequent grinding/magnetic separation process. Minerals, 2016, 6(4): 119 doi: 10.3390/min6040119
    [22] Chu M S, Zhao Q J. Present status and development perspective of direct reduction and smelting reduction in China. China Metall, 2008, 18(9): 1 doi: 10.3969/j.issn.1006-9356.2008.09.001

    儲滿生, 趙慶杰. 中國發展非高爐煉鐵的現狀及展望. 中國冶金, 2008, 18(9):1 doi: 10.3969/j.issn.1006-9356.2008.09.001
    [23] Liang Z K, Yi L Y, Huang Z C, et al. A novel and green metallurgical technique of highly efficient iron recovery from refractory low-grade iron ores. ACS Sustain Chem Eng, 2019, 7(22): 18726 doi: 10.1021/acssuschemeng.9b05423
    [24] Ma B Z, Yang W J, Xing P, et al. Pilot-scale plant study on solid-state metalized reduction-magnetic separation for magnesium-rich nickel oxide ores. Int J Miner Process, 2017, 169: 99 doi: 10.1016/j.minpro.2017.11.002
    [25] Wu S C, Sun T C, Yang H F. Study on phosphorus removal of high-phosphorus oolitic hematite abroad by direct reduction and magnetic separation. Met Mine, 2019(11): 109

    吳世超, 孫體昌, 楊慧芬. 國外某高磷鮞狀赤鐵礦直接還原?磁選降磷研究. 金屬礦山, 2019(11):109
    [26] Yang M, Zhu Q S, Fan C L, et al. Roasting-induced phase change and its influence on phosphorus removal through acid leaching for high-phosphorus iron ore. Int J Miner Metall Mater, 2015, 22(4): 346 doi: 10.1007/s12613-015-1079-x
    [27] Huang W S, Yan L, Wu S C, et al. Study on the process mineralogy of a high phosphorus oolitic iron ore in abroad. Met Mine, 2020(9): 137

    黃武勝, 延黎, 吳世超, 等. 國外某高磷鮞狀鐵礦石工藝礦物學研究. 金屬礦山, 2020(9):137
    [28] Guo Z Q, Zhu D Q, Pan J, et al. Innovative methodology for comprehensive and harmless utilization of waste copper slag via selective reduction-magnetic separation process. J Clean Prod, 2018, 187: 910 doi: 10.1016/j.jclepro.2018.03.264
    [29] Zhu D Q, Xu J W, Guo Z Q, et al. Synergetic utilization of copper slag and ferruginous manganese ore via co-reduction followed by magnetic separation process. J Clean Prod, 2020, 250: 119462 doi: 10.1016/j.jclepro.2019.119462
  • 加載中
圖(9) / 表(4)
計量
  • 文章訪問數:  797
  • HTML全文瀏覽量:  364
  • PDF下載量:  60
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-11-29
  • 網絡出版日期:  2021-02-05
  • 刊出日期:  2022-05-25

目錄

    /

    返回文章
    返回