Pilot study of high-phosphorus oolitic iron ore for iron recovery and dephosphorization by direct reduction–magnetic separation
-
摘要: 為給回轉窯工業試驗提供參數,以小型試驗最佳結果為基礎,進行了高磷鮞狀鐵礦煤基直接還原?磁選提鐵降磷擴大試驗。結果表明,在最佳的條件下可獲得鐵品位94.17%、鐵回收率77.47%以及磷質量分數0.08%的粉末還原鐵,推薦的回轉窯工業試驗初始條件為:石灰石用量(質量分數)28%、無煙煤用量(質量分數)16%、還原溫度1300 ℃,還原時間3 h。采用XRD以及SEM-EDS研究了無煙煤的作用機理,發現無煙煤用量增加,促進了浮氏體、鎂鐵尖晶石的還原以及鐵顆粒長大,從而提高了鐵的回收效果,但過多的無煙煤通過增強還原氣氛及其帶入的灰分消耗了石灰石,使鐵礦物中的磷以及磷灰石還原成單質磷并與鐵顆粒形成鐵磷合金。Abstract: With the development of the steel industry, the use of high-grade and easy-to-handle iron ore is gradually decreasing. At present, the effective utilization of low-grade and refractory iron ore, particularly high-phosphorus oolitic iron ore, has gradually become a research hotspot and a worldwide problem. This type of ore is mainly distributed in the USA, France, Germany, Russia, and China and often has an oolitic structure, where the intercalation relationship between iron minerals and gangue minerals is complicated and the phosphorus content is high. Therefore, this type of ore has not yet been developed and utilized. Studies have shown that the use of coal-based direct reduction–magnetic separation to process high-phosphorus oolitic iron ore is one of the methods to achieve efficient utilization of its iron resources. Researchers have conducted in-depth studies on process optimization, dephosphorization mechanism, and iron and phosphorus reduction kinetics. To determine the parameters for the industrial test of the rotary kiln, based on the best result of the small-scale test, a pilot-scale experiment on iron recovery and dephosphorization from high-phosphorus oolitic iron ore was conducted using coal-based direct reduction, followed by magnetic separation. Results showed that under the optimum conditions, the grade and recovery of iron and phosphorus contents in the powdered reduced iron concentrate were 94.17%, 77.47%, and 0.08%, respectively. Limestone dosage of 28%, anthracite dosage of 16%, reduction temperature of 1300 °C and reduction time of 3 h were recommended as the initial conditions for the industrial test of the rotary kiln. The mechanisms of anthracite were investigated by X-ray diffraction and scanning electron microscopy–energy-dispersive X-ray spectroscopy. The results showed that with the increase in anthracite dosage, the reduction of wustite and pleonaste and the growth of iron particles are promoted, thereby improving the recovery effect of iron. However, a high anthracite dosage enhanced the reducing atmosphere and its ash content consumed limestone, causing phosphorus in iron minerals and apatite to be reduced to elemental phosphorus and iron particles to form the iron–phosphorus alloy.
-
圖 8 不同無煙煤用量下焙燒礦的SEM圖和EDS分析。(a)16%;(b)18%;(c)20%;(d)圖(a)中點1的能譜圖;(e)圖(b)中點2的能譜圖;(f)圖(c)中點3的能譜圖
Figure 8. SEM images and EDS analyses of roasted ores with different anthracite dosages: (a) 16%; (b) 18%; (c) 20%; (d) energy spectrum of point 1 in Fig.(a); (e) energy spectrum of point 2 in Fig.(b); (f) energy spectrum of point 3 in Figs.(c)
表 1 試樣的化學成分(質量分數)
Table 1. Chemical composition of the sample
% TFe SiO2 Al2O3 CaO MgO K2O P S MnO LOI 55.65 6.71 4.80 2.13 0.37 0.034 0.56 0.016 0.22 4.93 表 2 試樣中鐵的物相分析
Table 2. Distributions of iron in the mineral phases of the sample
Phase Mass fraction of minerals /
%Distribution of iron in minerals/% Magnetite 30.12 54.29 Martite 11.44 20.73 Hematite 13.43 24.14 Siderite 0.43 0.77 Ferrosilite 0.02 0.03 Iron sulfide 0.02 0.04 Total 55.55 100 表 3 試樣中磷的物相分析
Table 3. Distributions of phosphorous in the mineral phases of the sample
Phase Mass fraction of minerals /% Distribution of iron in minerals/% Apatite 0.29 50.88 Phosphorous in the iron-bearing phase 0.24 42.10 Others 0.03 7.02 Total 0.56 100 表 4 粉末還原鐵的化學組成(質量分數)
Table 4. Chemical compositions of the powdered reduced iron
% Fe MFe P CaO SiO2 Al2O3 MgO MnO C S 94.17 92.27 0.080 1.48 1.13 0.64 0.12 0.046 0.49 0.02 www.77susu.com -
參考文獻
[1] Wu S C, Li Z Y, Sun T C, et al. Effect of additives on iron recovery and dephosphorization by reduction roasting–magnetic separation of refractory high-phosphorus iron ore. Int J Miner Metall Mater, 2021, 28(12): 1908 doi: 10.1007/s12613-021-2329-8 [2] Bao Q P, Guo L, Guo Z C. A novel direct reduction-flash smelting separation process of treating high phosphorous iron ore fines. Powder Technol, 2021, 377: 149 doi: 10.1016/j.powtec.2020.08.066 [3] Zhou W T, Han Y X, Sun Y S, et al. Strengthening iron enrichment and dephosphorization of high-phosphorus oolitic hematite using high-temperature pretreatment. Int J Miner Metall Mater, 2020, 27(4): 443 doi: 10.1007/s12613-019-1897-3 [4] Tang H Q, Qi T F, Qin Y Q. Production of low-phosphorus molten iron from high-phosphorus oolitic hematite using biomass char. JOM, 2015, 67(9): 1956 doi: 10.1007/s11837-015-1541-2 [5] Quast K. A review on the characterisation and processing of oolitic iron ores. Miner Eng, 2018, 126: 89 doi: 10.1016/j.mineng.2018.06.018 [6] Zhu D Q, Chun T J, Pan J, et al. Upgrading and dephosphorization of Western Australian iron ore using reduction roasting by adding sodium carbonate. Int J Miner Metall Mater, 2013, 20(6): 505 doi: 10.1007/s12613-013-0758-8 [7] Yu W, Sun T C, Kou J, et al. The function of Ca(OH)2 and Na2CO3 as additive on the reduction of high-phosphorus oolitic hematite-coal mixed pellets. ISIJ Int, 2013, 53(3): 427 doi: 10.2355/isijinternational.53.427 [8] Li G H, Zhang S H, Rao M J, et al. Effects of sodium salts on reduction roasting and Fe-P separation of high-phosphorus oolitic hematite ore. Int J Miner Process, 2013, 124: 26 doi: 10.1016/j.minpro.2013.07.006 [9] Rao M J, Ouyang C Z, Li G H, et al. Behavior of phosphorus during the carbothermic reduction of phosphorus-rich oolitic hematite ore in the presence of Na2SO4. Int J Miner Process, 2015, 143: 72 doi: 10.1016/j.minpro.2015.09.002 [10] Li Y L, Sun T C, Xu C Y, et al. New dephosphorizing agent for phosphorus removal from high-phosphorus oolitic hematite ore in direct reduction roasting. J Central South Univ (Sci Technol) , 2012, 43(3): 827李永利, 孫體昌, 徐承焱, 等. 高磷鮞狀赤鐵礦直接還原同步脫磷新脫磷劑. 中南大學學報(自然科學版), 2012, 43(3):827 [11] Xu C Y, Sun T C, Qi C Y, et al. Effects of reductants on direct reduction and synchronous dephosphorization of high-phosphorous oolitic hematite. Chin J Nonferrous Met, 2011, 21(3): 680徐承焱, 孫體昌, 祁超英, 等. 還原劑對高磷鮞狀赤鐵礦直接還原同步脫磷的影響. 中國有色金屬學報, 2011, 21(3):680 [12] Yu W, Tang Q Y, Chen J A, et al. Thermodynamic analysis of the carbothermic reduction of a high-phosphorus oolitic iron ore by FactSage. Int J Miner Metall Mater, 2016, 23(10): 1126 doi: 10.1007/s12613-016-1331-z [13] Zhang Y Y, Xue Q G, Wang G, et al. Phosphorus-containing mineral evolution and thermodynamics of phosphorus vaporization during carbothermal reduction of high-phosphorus iron ore. Metals, 2018, 8(6): 451 doi: 10.3390/met8060451 [14] Sun Y S, Han Y X, Wei X C, et al. Non-isothermal reduction kinetics of oolitic iron ore in ore/coal mixture. J Therm Anal Calorim, 2016, 123(1): 703 doi: 10.1007/s10973-015-4863-y [15] Sun Y S, Han Y X, Gao P, et al. Thermogravimetric study of coal-based reduction of oolitic iron ore: Kinetics and mechanisms. Int J Miner Process, 2015, 143: 87 doi: 10.1016/j.minpro.2015.09.005 [16] Cha J W, Kim D Y, Jung S M. Distribution behavior of phosphorus and metallization of iron oxide in carbothermic reduction of high-phosphorus iron ore. Metall Mater Trans B, 2015, 46(5): 2165 doi: 10.1007/s11663-015-0399-6 [17] Sun Y S, Han Y X, Gao P, et al. Distribution behavior of phosphorus in the coal-based reduction of high-phosphorus-content oolitic iron ore. Int J Miner Metall Mater, 2014, 21(4): 331 doi: 10.1007/s12613-014-0913-x [18] Li Y F, Han Y X, Sun Y S, et al. Growth behavior and size characterization of metallic iron particles in coal-based reduction of oolitic hematite–coal composite briquettes. Minerals, 2018, 8(5): 177 doi: 10.3390/min8050177 [19] Sun Y S, Han Y X, Li Y F, et al. Formation and characterization of metallic iron grains in coal-based reduction of oolitic iron ore. Int J Miner Metall Mater, 2017, 24(2): 123 doi: 10.1007/s12613-017-1386-5 [20] Hu J G, Wu M Q, Mao Y L. Latest development of direct reduction processes of iron ores. Res Iron Steel, 2006, 34(2): 53 doi: 10.3969/j.issn.1001-1447.2006.02.014胡俊鴿, 吳美慶, 毛艷麗. 直接還原煉鐵技術的最新發展. 鋼鐵研究, 2006, 34(2):53 doi: 10.3969/j.issn.1001-1447.2006.02.014 [21] Cao Z C, Sun T C, Xue X, et al. Iron recovery from discarded copper slag in a RHF direct reduction and subsequent grinding/magnetic separation process. Minerals, 2016, 6(4): 119 doi: 10.3390/min6040119 [22] Chu M S, Zhao Q J. Present status and development perspective of direct reduction and smelting reduction in China. China Metall, 2008, 18(9): 1 doi: 10.3969/j.issn.1006-9356.2008.09.001儲滿生, 趙慶杰. 中國發展非高爐煉鐵的現狀及展望. 中國冶金, 2008, 18(9):1 doi: 10.3969/j.issn.1006-9356.2008.09.001 [23] Liang Z K, Yi L Y, Huang Z C, et al. A novel and green metallurgical technique of highly efficient iron recovery from refractory low-grade iron ores. ACS Sustain Chem Eng, 2019, 7(22): 18726 doi: 10.1021/acssuschemeng.9b05423 [24] Ma B Z, Yang W J, Xing P, et al. Pilot-scale plant study on solid-state metalized reduction-magnetic separation for magnesium-rich nickel oxide ores. Int J Miner Process, 2017, 169: 99 doi: 10.1016/j.minpro.2017.11.002 [25] Wu S C, Sun T C, Yang H F. Study on phosphorus removal of high-phosphorus oolitic hematite abroad by direct reduction and magnetic separation. Met Mine, 2019(11): 109吳世超, 孫體昌, 楊慧芬. 國外某高磷鮞狀赤鐵礦直接還原?磁選降磷研究. 金屬礦山, 2019(11):109 [26] Yang M, Zhu Q S, Fan C L, et al. Roasting-induced phase change and its influence on phosphorus removal through acid leaching for high-phosphorus iron ore. Int J Miner Metall Mater, 2015, 22(4): 346 doi: 10.1007/s12613-015-1079-x [27] Huang W S, Yan L, Wu S C, et al. Study on the process mineralogy of a high phosphorus oolitic iron ore in abroad. Met Mine, 2020(9): 137黃武勝, 延黎, 吳世超, 等. 國外某高磷鮞狀鐵礦石工藝礦物學研究. 金屬礦山, 2020(9):137 [28] Guo Z Q, Zhu D Q, Pan J, et al. Innovative methodology for comprehensive and harmless utilization of waste copper slag via selective reduction-magnetic separation process. J Clean Prod, 2018, 187: 910 doi: 10.1016/j.jclepro.2018.03.264 [29] Zhu D Q, Xu J W, Guo Z Q, et al. Synergetic utilization of copper slag and ferruginous manganese ore via co-reduction followed by magnetic separation process. J Clean Prod, 2020, 250: 119462 doi: 10.1016/j.jclepro.2019.119462 -