<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

廢舊三元鋰離子電池正極材料的微波吸收特性

李寧 劉秉國 張利波 劉鵬 郭勝惠 董恩華

李寧, 劉秉國, 張利波, 劉鵬, 郭勝惠, 董恩華. 廢舊三元鋰離子電池正極材料的微波吸收特性[J]. 工程科學學報, 2022, 44(7): 1222-1230. doi: 10.13374/j.issn2095-9389.2020.11.27.003
引用本文: 李寧, 劉秉國, 張利波, 劉鵬, 郭勝惠, 董恩華. 廢舊三元鋰離子電池正極材料的微波吸收特性[J]. 工程科學學報, 2022, 44(7): 1222-1230. doi: 10.13374/j.issn2095-9389.2020.11.27.003
LI Ning, LIU Bing-guo, ZHANG Li-bo, LIU Peng, GUO Sheng-hui, DONG En-hua. Microwave absorption characteristics of cathode materials of waste ternary lithium-ion batteries[J]. Chinese Journal of Engineering, 2022, 44(7): 1222-1230. doi: 10.13374/j.issn2095-9389.2020.11.27.003
Citation: LI Ning, LIU Bing-guo, ZHANG Li-bo, LIU Peng, GUO Sheng-hui, DONG En-hua. Microwave absorption characteristics of cathode materials of waste ternary lithium-ion batteries[J]. Chinese Journal of Engineering, 2022, 44(7): 1222-1230. doi: 10.13374/j.issn2095-9389.2020.11.27.003

廢舊三元鋰離子電池正極材料的微波吸收特性

doi: 10.13374/j.issn2095-9389.2020.11.27.003
基金項目: 可再生能源多能互補關鍵技術研究及產業化應用示范(2018IB020)
詳細信息
    通訊作者:

    E-mail: bingoliu@126.com

  • 中圖分類號: TM912

Microwave absorption characteristics of cathode materials of waste ternary lithium-ion batteries

More Information
  • 摘要: 廢舊三元鋰離子電池對環境和人類有很大危害性,但是其中的鋰、鎳、鈷、錳等有價金屬,具有較高的回收價值。本文以機械破碎后的三元鋰電池為原料,研究了正極材料在室溫下的表觀密度的介電特性以及隨溫度變化的微波介電特性和吸收性能。結果表明,在室溫下,正極材料在表觀密度為1.484 g·cm–3時具有最佳的介電性能。加熱過程中,正極材料在25~700 ℃之間都有良好的微波吸收性能,400 ℃時介電常數$ {\textit{ε}}_{\rm{r}}^{{{'}}} $達到最大值11.96 F·m–1,隨著微波功率增大,正極粉末升到700 ℃的時間明顯縮短,最大升溫速率在320~450 ℃的范圍內。介電性能變化趨勢與微波加熱特性變化趨勢相吻合。

     

  • 圖  1  正極材料的XRD圖

    Figure  1.  XRD spectrum of the cathode material

    圖  2  正極材料的SEM和EDS分析圖

    Figure  2.  SEM and EDS analysis diagrams of the cathode material

    圖  3  介電測試系統的示意圖。(a)介電測試裝置;(b)介電器件中的圓柱諧振腔

    Figure  3.  Schematic diagram of the dielectric test system: (a) dielectric testing device; (b) cylindrical resonant cavity in the dielectric device

    圖  4  實驗室箱式微波爐示意圖

    Figure  4.  Schematic diagram of the laboratory box microwave oven

    圖  5  正極材料在2450 MHz微波輻射下不同密度下的介電性能。(a)${{\varepsilon}}_{\rm{r}}^{{'}}$;(b)${{\varepsilon}}_{\rm{r}}^{{''}}$;(c)tanδ

    Figure  5.  Dielectric properties of the cathode material at different densities under 2450 MHz microwave radiation: (a)${{\varepsilon}}_{\rm{r}}^{{'}}$; (b)${{\varepsilon}}_{\rm{r}}^{{''}}$; (c) tanδ

    圖  6  正極材料在2450 MHz微波輻射下的介電性能。(a)${{\varepsilon}}_{\rm{r}}^{{'}}$;(b)${{\varepsilon}}_{\rm{r}}^{{''}}$;(c)tanδ; (d) Dp

    Figure  6.  Dielectric properties of the cathode material under 2450-MHz microwave radiation: (a)${{\varepsilon}}_{\rm{r}}^{{'}}$; (b)${{\varepsilon}}_{\rm{r}}^{{''}}$; (c) tanδ; (d) Dp

    圖  7  不同溫度下的反射損耗RL。(a)25 °C;(b)50 °C;(c)100 °C;(d)150 °C;(e)200 °C;(f)250 °C;(g)300 °C;(h)350 °C;(i)400 °C;(j)450 °C;(k)500 °C;(l)550 °C;(m)600 °C;(n)650 °C; (o) 700 °C

    Figure  7.  Reflection loss (RL) at different temperatures: (a) 25 °C; (b) 50 °C; (c) 100 °C; (d) 150 °C; (e) 200 °C; (f) 250 °C; (g) 300 °C; (h) 350 °C; (i) 400 °C; (j) 450 °C; (k) 500 °C; (l) 550 °C; (m) 600 °C; (n) 650 °C; (o) 700 °C

    圖  8  正極材料在500、750、1000、1500和2000 W微波功率下溫度隨時間變化曲線

    Figure  8.  Temperature change curve of the cathode material with time under 500, 750, 1000, 1500, and 2000 W microwave power

    圖  9  正極材料在不同微波功率下的溫度和升溫速率隨時間變化曲線。(a)500 W;(b)750 W;(c)1000 W;(d)1500 W;(e)2000 W

    Figure  9.  Temperature change curve and heating rate-change curve of the cathode material with time under different microwave powers: (a) 500 W; (b) 750 W; (c) 1000 W; (d) 1500 W; (e) 2000 W

    表  1  廢舊鋰電池正極粉末中主要元素的含量(質量分數)

    Table  1.   Content of the main elements in the cathode material of waste lithium batteries %

    NiCoMnCLiAlFeCu
    14.546.6035.911.865.890.640.1250.002
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Palacín M R, de Guibert A. Why do batteries fail? Science, 2016, 351(6273): 1253292
    [2] Gao R, Wang J F. Recovery of cobalt from the LiNi1/3Co1/3Mn1/3O2 cathode of waste lithium-ion batteries. Chin J Environ Eng, 2020, 14(2): 506 doi: 10.12030/j.cjee.201904118

    高瑞, 王繼芬. 廢舊鋰電池正極材料LiNi1/3Co1/3Mn1/3O2中鈷的回收. 環境工程學報, 2020, 14(2):506 doi: 10.12030/j.cjee.201904118
    [3] Wu Y, Pei F, Jia L L, et al. Overview of recovery technique of valuable metals from spent lithium ion batteries. Chin J Rare Met, 2013, 37(2): 320 doi: 10.3969/j.issn.0258-7076.2013.02.023

    吳越, 裴鋒, 賈蕗路, 等. 廢舊鋰離子電池中有價金屬的回收技術進展. 稀有金屬, 2013, 37(2):320 doi: 10.3969/j.issn.0258-7076.2013.02.023
    [4] Li H L, Chen Y Z, Song W J, et al. Electrode material recovery mode and economic analysis of lithium-ion power battery. Adv New Renew Energy, 2018, 6(6): 505 doi: 10.3969/j.issn.2095-560X.2018.06.007

    黎華玲, 陳永珍, 宋文吉, 等. 鋰離子動力電池的電極材料回收模式及經濟性分析. 新能源進展, 2018, 6(6):505 doi: 10.3969/j.issn.2095-560X.2018.06.007
    [5] Saint J, Morcrette M, Larcher D, et al. Exploring the Li-Ga room temperature phase diagram and the electrochemical performances of the LixGay alloys vs Li. Solid State Ion, 2005, 176(1-2): 189 doi: 10.1016/j.ssi.2004.05.021
    [6] Xu J Q, Thomas H R, Francis R W, et al. A review of processes and technologies for the recycling of lithium-ion secondary batteries. J Power Sources, 2008, 177(2): 512 doi: 10.1016/j.jpowsour.2007.11.074
    [7] Innocenzi V, Ippolito N M, De Michelis I, et al. A review of the processes and lab-scale techniques for the treatment of spent rechargeable NiMH batteries. J Power Sources, 2017, 362: 202 doi: 10.1016/j.jpowsour.2017.07.034
    [8] Sun Z, Cao H B, Zhang X H, et al. Spent lead-acid battery recycling in China - A review and sustainable analyses on mass flow of lead. Waste Manag, 2017, 64: 190 doi: 10.1016/j.wasman.2017.03.007
    [9] Xu L, Gao S L, Zhai G F. ADAMS-based connector mechanical separation force analysis and optimization technology research. Electromechanical Compon, 2016, 36(5): 28 doi: 10.3969/j.issn.1000-6133.2016.05.006

    徐樂, 高樹良, 翟國富. 基于ADAMS的連接器機械分離力分析及優化技術研究. 機電元件, 2016, 36(5):28 doi: 10.3969/j.issn.1000-6133.2016.05.006
    [10] Pagnanelli F, Moscardini E, Altimari P, et al. Leaching of electrodic powders from lithium ion batteries: Optimization of operating conditions and effect of physical pretreatment for waste fraction retrieval. Waste Manag, 2017, 60: 706 doi: 10.1016/j.wasman.2016.11.037
    [11] Zhang T, He Y Q, Wang F F, et al. Chemical and process mineralogical characterizations of spent lithium-ion batteries: An approach by multi-analytical techniques. Waste Manag, 2014, 34(6): 1051 doi: 10.1016/j.wasman.2014.01.002
    [12] Li L, Dunn J B, Zhang X X, et al. Recovery of metals from spent lithium-ion batteries with organic acids as leaching reagents and environmental assessment. J Power Sources, 2013, 233: 180 doi: 10.1016/j.jpowsour.2012.12.089
    [13] Wang H L, Nie L, Li J, et al. Characterization and assessment of volatile organic compounds (VOCs) emissions from typical industries. Chin Sci Bull, 2013, 58(7): 724 doi: 10.1007/s11434-012-5345-2
    [14] Nie H H, Xu L, Song D W, et al. LiCoO2: recycling from spent batteries and regeneration with solid state synthesis. Green Chem, 2015, 17(2): 1276 doi: 10.1039/C4GC01951B
    [15] Li H L, Chen Y Z, Song W J, et al. Study on recovery process of valuable metals of ternary cathode in spent lithium-ion battery. Adv New Renew Energy, 2020, 8(1): 75 doi: 10.3969/j.issn.2095-560X.2020.01.012

    黎華玲, 陳永珍, 宋文吉, 等. 廢舊三元鋰離子電池正極有價金屬的回收工藝研究. 新能源進展, 2020, 8(1):75 doi: 10.3969/j.issn.2095-560X.2020.01.012
    [16] Li H Y, Long H L, Zhang L B, et al. Effectiveness of microwave-assisted thermal treatment in the extraction of gold in cyanide tailings. J Hazard Mater, 2020, 384: 121456 doi: 10.1016/j.jhazmat.2019.121456
    [17] Li K Q, Chen J, Peng J H, et al. Dielectric properties and thermal behavior of electrolytic manganese anode mud in microwave field. J Hazard Mater, 2020, 384: 121227 doi: 10.1016/j.jhazmat.2019.121227
    [18] Ye X L, Guo S H, Qu W W, et al. Microwave field: High temperature dielectric properties and heating characteristics of waste hydrodesulfurization catalysts. J Hazard Mater, 2019, 366: 432 doi: 10.1016/j.jhazmat.2018.12.024
    [19] Pozar D M. Microwave Engineering. 4th Ed. New York: John wiley & sons, 2011
    [20] Liao Y T. Study on the Electro-Magnetic Parameter and Mircowave Absorption Property of Carbon Nanotuber Composties [Dissertation]. Guangzhou: Guangdong University of Technology, 2006

    廖宇濤. 碳納米管復合材料的電磁參數與吸收電磁波性能的研究[學位論文]. 廣州: 廣東工業大學, 2006
    [21] Liu S H, Guan H T, Duan Y P, et al. Electromagnetic absorbing characteristics of manganese dioxide composites. J Funct Mater, 2006, 37(2): 197 doi: 10.3321/j.issn:1001-9731.2006.02.009

    劉順華, 管洪濤, 段玉平, 等. 二氧化錳復合材料吸波特性研究. 功能材料, 2006, 37(2):197 doi: 10.3321/j.issn:1001-9731.2006.02.009
    [22] Zhao Y Z, Liu B G, Zhang L B, et al. Microwave-absorbing properties of cathode material during reduction roasting for spent lithium-ion battery recycling. J Hazard Mater, 2020, 384: 121487 doi: 10.1016/j.jhazmat.2019.121487
    [23] Chaudhury A K, Rao K V. Dielectric properties of single crystals of MnO and of mixed crystals of MnO/CoO and MnO/NiO. Phys Status Solidi B, 1969, 32(2): 731 doi: 10.1002/pssb.19690320225
    [24] He F, Chen J, Chen G, et al. Correction to: Microwave dielectric properties and reduction behavior of low-grade pyrolusite. JOM, 2020, 72(10): 3706 doi: 10.1007/s11837-020-04187-4
    [25] Su X J, Mo Q H, He C L, et al. Microwave absorption characteristics of manganese compounds. Min Metall Eng, 2015, 35(5): 90 doi: 10.3969/j.issn.0253-6099.2015.05.024

    蘇秀娟, 莫秋紅, 何春林, 等. 錳及其化合物微波吸收性能研究. 礦冶工程, 2015, 35(5):90 doi: 10.3969/j.issn.0253-6099.2015.05.024
    [26] Shang X B, Chen J R, Peng J H, et al. Thickness optimization for petroleum coke in microwave dehydrating based on the analysis of dynamic absorption efficiency. High Temp Mater Process, 2015, 34(4): 367
  • 加載中
圖(9) / 表(1)
計量
  • 文章訪問數:  555
  • HTML全文瀏覽量:  263
  • PDF下載量:  48
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-11-27
  • 網絡出版日期:  2021-06-18
  • 刊出日期:  2022-07-01

目錄

    /

    返回文章
    返回