Microwave absorption characteristics of cathode materials of waste ternary lithium-ion batteries
-
摘要: 廢舊三元鋰離子電池對環境和人類有很大危害性,但是其中的鋰、鎳、鈷、錳等有價金屬,具有較高的回收價值。本文以機械破碎后的三元鋰電池為原料,研究了正極材料在室溫下的表觀密度的介電特性以及隨溫度變化的微波介電特性和吸收性能。結果表明,在室溫下,正極材料在表觀密度為1.484 g·cm–3時具有最佳的介電性能。加熱過程中,正極材料在25~700 ℃之間都有良好的微波吸收性能,400 ℃時介電常數
$ {\textit{ε}}_{\rm{r}}^{{{'}}} $ 達到最大值11.96 F·m–1,隨著微波功率增大,正極粉末升到700 ℃的時間明顯縮短,最大升溫速率在320~450 ℃的范圍內。介電性能變化趨勢與微波加熱特性變化趨勢相吻合。Abstract: In recent years, lithium-ion batteries using nickel-cobalt-manganese ternary materials as cathode materials have advantages of good electrical performance, high specific energy, green environmental protection, low cost, and high discharge stability. These have been widely used in new energy vehicles and portable electronics product areas. As a new generation of rechargeable batteries, lithium batteries have a certain service life, which is generally 3–5 years. Therefore, the rapid development of lithium-ion batteries has caused a blowout increase in the number of used lithium-ion batteries. Waste ternary lithium-ion batteries are very harmful to the environment and humans, but valuable metals such as lithium, nickel, cobalt, and manganese have a high recycling value. In terms of resource recycling and environmental protection, used lithium-ion batteries have a high recycling value. At present, the recycling of waste lithium-ion batteries is facing some problems. For example, the diversity of electrode materials makes their separation and purification difficult, and the high cost can also cause some problems such as secondary pollution. Therefore, it is necessary to find green and low-cost methods for the recycling of waste lithium-ion batteries. Microwave metallurgy has outstanding advantages in this respect. Therefore, this paper used the mechanically crushed ternary lithium battery as the raw material for studying the dielectric properties of the apparent density of the positive electrode material at room temperature and the microwave dielectric properties and absorption that change with temperature. Results show that at room temperature, the cathode material has the best dielectric performance at an apparent density of 1.484 g·cm–3. During the heating process, the cathode material has good microwave absorption performance at 25–700 ℃. At 400 ℃, the dielectric constant$ {\textit{ε}}_{\rm{r}}^{'} $ reaches the maximum value of 11.96 F·M–1. With the increase in the microwave power, the time for the positive electrode powder to rise to 700 °C is significantly shortened, and the maximum heating rate is in the range of 320–450 °C. The changing trend of the dielectric properties is consistent with the changing trend of the microwave heating characteristics.-
Key words:
- lithium-ion battery /
- ternary /
- positive electrode powder /
- microwave heating /
- dielectric constant /
- heating rate
-
圖 5 正極材料在2450 MHz微波輻射下不同密度下的介電性能。(a)
${{\varepsilon}}_{\rm{r}}^{{'}}$ ;(b)${{\varepsilon}}_{\rm{r}}^{{''}}$ ;(c)tanδFigure 5. Dielectric properties of the cathode material at different densities under 2450 MHz microwave radiation: (a)
${{\varepsilon}}_{\rm{r}}^{{'}}$ ; (b)${{\varepsilon}}_{\rm{r}}^{{''}}$ ; (c) tanδ圖 6 正極材料在2450 MHz微波輻射下的介電性能。(a)
${{\varepsilon}}_{\rm{r}}^{{'}}$ ;(b)${{\varepsilon}}_{\rm{r}}^{{''}}$ ;(c)tanδ; (d) DpFigure 6. Dielectric properties of the cathode material under 2450-MHz microwave radiation: (a)
${{\varepsilon}}_{\rm{r}}^{{'}}$ ; (b)${{\varepsilon}}_{\rm{r}}^{{''}}$ ; (c) tanδ; (d) Dp圖 7 不同溫度下的反射損耗RL。(a)25 °C;(b)50 °C;(c)100 °C;(d)150 °C;(e)200 °C;(f)250 °C;(g)300 °C;(h)350 °C;(i)400 °C;(j)450 °C;(k)500 °C;(l)550 °C;(m)600 °C;(n)650 °C; (o) 700 °C
Figure 7. Reflection loss (RL) at different temperatures: (a) 25 °C; (b) 50 °C; (c) 100 °C; (d) 150 °C; (e) 200 °C; (f) 250 °C; (g) 300 °C; (h) 350 °C; (i) 400 °C; (j) 450 °C; (k) 500 °C; (l) 550 °C; (m) 600 °C; (n) 650 °C; (o) 700 °C
表 1 廢舊鋰電池正極粉末中主要元素的含量(質量分數)
Table 1. Content of the main elements in the cathode material of waste lithium batteries
% Ni Co Mn C Li Al Fe Cu 14.54 6.60 35.91 1.86 5.89 0.64 0.125 0.002 www.77susu.com -
參考文獻
[1] Palacín M R, de Guibert A. Why do batteries fail? Science, 2016, 351(6273): 1253292 [2] Gao R, Wang J F. Recovery of cobalt from the LiNi1/3Co1/3Mn1/3O2 cathode of waste lithium-ion batteries. Chin J Environ Eng, 2020, 14(2): 506 doi: 10.12030/j.cjee.201904118高瑞, 王繼芬. 廢舊鋰電池正極材料LiNi1/3Co1/3Mn1/3O2中鈷的回收. 環境工程學報, 2020, 14(2):506 doi: 10.12030/j.cjee.201904118 [3] Wu Y, Pei F, Jia L L, et al. Overview of recovery technique of valuable metals from spent lithium ion batteries. Chin J Rare Met, 2013, 37(2): 320 doi: 10.3969/j.issn.0258-7076.2013.02.023吳越, 裴鋒, 賈蕗路, 等. 廢舊鋰離子電池中有價金屬的回收技術進展. 稀有金屬, 2013, 37(2):320 doi: 10.3969/j.issn.0258-7076.2013.02.023 [4] Li H L, Chen Y Z, Song W J, et al. Electrode material recovery mode and economic analysis of lithium-ion power battery. Adv New Renew Energy, 2018, 6(6): 505 doi: 10.3969/j.issn.2095-560X.2018.06.007黎華玲, 陳永珍, 宋文吉, 等. 鋰離子動力電池的電極材料回收模式及經濟性分析. 新能源進展, 2018, 6(6):505 doi: 10.3969/j.issn.2095-560X.2018.06.007 [5] Saint J, Morcrette M, Larcher D, et al. Exploring the Li-Ga room temperature phase diagram and the electrochemical performances of the LixGay alloys vs Li. Solid State Ion, 2005, 176(1-2): 189 doi: 10.1016/j.ssi.2004.05.021 [6] Xu J Q, Thomas H R, Francis R W, et al. A review of processes and technologies for the recycling of lithium-ion secondary batteries. J Power Sources, 2008, 177(2): 512 doi: 10.1016/j.jpowsour.2007.11.074 [7] Innocenzi V, Ippolito N M, De Michelis I, et al. A review of the processes and lab-scale techniques for the treatment of spent rechargeable NiMH batteries. J Power Sources, 2017, 362: 202 doi: 10.1016/j.jpowsour.2017.07.034 [8] Sun Z, Cao H B, Zhang X H, et al. Spent lead-acid battery recycling in China - A review and sustainable analyses on mass flow of lead. Waste Manag, 2017, 64: 190 doi: 10.1016/j.wasman.2017.03.007 [9] Xu L, Gao S L, Zhai G F. ADAMS-based connector mechanical separation force analysis and optimization technology research. Electromechanical Compon, 2016, 36(5): 28 doi: 10.3969/j.issn.1000-6133.2016.05.006徐樂, 高樹良, 翟國富. 基于ADAMS的連接器機械分離力分析及優化技術研究. 機電元件, 2016, 36(5):28 doi: 10.3969/j.issn.1000-6133.2016.05.006 [10] Pagnanelli F, Moscardini E, Altimari P, et al. Leaching of electrodic powders from lithium ion batteries: Optimization of operating conditions and effect of physical pretreatment for waste fraction retrieval. Waste Manag, 2017, 60: 706 doi: 10.1016/j.wasman.2016.11.037 [11] Zhang T, He Y Q, Wang F F, et al. Chemical and process mineralogical characterizations of spent lithium-ion batteries: An approach by multi-analytical techniques. Waste Manag, 2014, 34(6): 1051 doi: 10.1016/j.wasman.2014.01.002 [12] Li L, Dunn J B, Zhang X X, et al. Recovery of metals from spent lithium-ion batteries with organic acids as leaching reagents and environmental assessment. J Power Sources, 2013, 233: 180 doi: 10.1016/j.jpowsour.2012.12.089 [13] Wang H L, Nie L, Li J, et al. Characterization and assessment of volatile organic compounds (VOCs) emissions from typical industries. Chin Sci Bull, 2013, 58(7): 724 doi: 10.1007/s11434-012-5345-2 [14] Nie H H, Xu L, Song D W, et al. LiCoO2: recycling from spent batteries and regeneration with solid state synthesis. Green Chem, 2015, 17(2): 1276 doi: 10.1039/C4GC01951B [15] Li H L, Chen Y Z, Song W J, et al. Study on recovery process of valuable metals of ternary cathode in spent lithium-ion battery. Adv New Renew Energy, 2020, 8(1): 75 doi: 10.3969/j.issn.2095-560X.2020.01.012黎華玲, 陳永珍, 宋文吉, 等. 廢舊三元鋰離子電池正極有價金屬的回收工藝研究. 新能源進展, 2020, 8(1):75 doi: 10.3969/j.issn.2095-560X.2020.01.012 [16] Li H Y, Long H L, Zhang L B, et al. Effectiveness of microwave-assisted thermal treatment in the extraction of gold in cyanide tailings. J Hazard Mater, 2020, 384: 121456 doi: 10.1016/j.jhazmat.2019.121456 [17] Li K Q, Chen J, Peng J H, et al. Dielectric properties and thermal behavior of electrolytic manganese anode mud in microwave field. J Hazard Mater, 2020, 384: 121227 doi: 10.1016/j.jhazmat.2019.121227 [18] Ye X L, Guo S H, Qu W W, et al. Microwave field: High temperature dielectric properties and heating characteristics of waste hydrodesulfurization catalysts. J Hazard Mater, 2019, 366: 432 doi: 10.1016/j.jhazmat.2018.12.024 [19] Pozar D M. Microwave Engineering. 4th Ed. New York: John wiley & sons, 2011 [20] Liao Y T. Study on the Electro-Magnetic Parameter and Mircowave Absorption Property of Carbon Nanotuber Composties [Dissertation]. Guangzhou: Guangdong University of Technology, 2006廖宇濤. 碳納米管復合材料的電磁參數與吸收電磁波性能的研究[學位論文]. 廣州: 廣東工業大學, 2006 [21] Liu S H, Guan H T, Duan Y P, et al. Electromagnetic absorbing characteristics of manganese dioxide composites. J Funct Mater, 2006, 37(2): 197 doi: 10.3321/j.issn:1001-9731.2006.02.009劉順華, 管洪濤, 段玉平, 等. 二氧化錳復合材料吸波特性研究. 功能材料, 2006, 37(2):197 doi: 10.3321/j.issn:1001-9731.2006.02.009 [22] Zhao Y Z, Liu B G, Zhang L B, et al. Microwave-absorbing properties of cathode material during reduction roasting for spent lithium-ion battery recycling. J Hazard Mater, 2020, 384: 121487 doi: 10.1016/j.jhazmat.2019.121487 [23] Chaudhury A K, Rao K V. Dielectric properties of single crystals of MnO and of mixed crystals of MnO/CoO and MnO/NiO. Phys Status Solidi B, 1969, 32(2): 731 doi: 10.1002/pssb.19690320225 [24] He F, Chen J, Chen G, et al. Correction to: Microwave dielectric properties and reduction behavior of low-grade pyrolusite. JOM, 2020, 72(10): 3706 doi: 10.1007/s11837-020-04187-4 [25] Su X J, Mo Q H, He C L, et al. Microwave absorption characteristics of manganese compounds. Min Metall Eng, 2015, 35(5): 90 doi: 10.3969/j.issn.0253-6099.2015.05.024蘇秀娟, 莫秋紅, 何春林, 等. 錳及其化合物微波吸收性能研究. 礦冶工程, 2015, 35(5):90 doi: 10.3969/j.issn.0253-6099.2015.05.024 [26] Shang X B, Chen J R, Peng J H, et al. Thickness optimization for petroleum coke in microwave dehydrating based on the analysis of dynamic absorption efficiency. High Temp Mater Process, 2015, 34(4): 367 -