<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

基于六端網絡法的壓電超聲換能器優化設計

劉世杰 馮平法 查慧婷 馮峰

劉世杰, 馮平法, 查慧婷, 馮峰. 基于六端網絡法的壓電超聲換能器優化設計[J]. 工程科學學報, 2022, 44(5): 933-939. doi: 10.13374/j.issn2095-9389.2020.11.24.008
引用本文: 劉世杰, 馮平法, 查慧婷, 馮峰. 基于六端網絡法的壓電超聲換能器優化設計[J]. 工程科學學報, 2022, 44(5): 933-939. doi: 10.13374/j.issn2095-9389.2020.11.24.008
LIU Shi-jie, FENG Ping-fa, ZHA Hui-ting, FENG Feng. Optimized design for a piezoelectric ultrasonic transducer based on the six-terminal network[J]. Chinese Journal of Engineering, 2022, 44(5): 933-939. doi: 10.13374/j.issn2095-9389.2020.11.24.008
Citation: LIU Shi-jie, FENG Ping-fa, ZHA Hui-ting, FENG Feng. Optimized design for a piezoelectric ultrasonic transducer based on the six-terminal network[J]. Chinese Journal of Engineering, 2022, 44(5): 933-939. doi: 10.13374/j.issn2095-9389.2020.11.24.008

基于六端網絡法的壓電超聲換能器優化設計

doi: 10.13374/j.issn2095-9389.2020.11.24.008
基金項目: 深圳市科技計劃基礎研究資助項目(學科布局)(JCYJ20180508152128308);深圳市科技計劃基礎研究資助項目(面上項目)(JCYJ20190813173607172)
詳細信息
    通訊作者:

    E-mail: zhahuiting123@sz.tsinghua.edu.cn

  • 中圖分類號: TH122

Optimized design for a piezoelectric ultrasonic transducer based on the six-terminal network

More Information
  • 摘要: 壓電超聲換能器傳統四端網絡設計方法忽略了壓電陶瓷晶堆內部的機電耦合過程,使用該方法所設計的壓電超聲換能器尺寸誤差大,輸出的超聲振幅較小。為了提高壓電超聲換能器尺寸設計精度、增大換能器輸出的超聲振幅,本文將考慮壓電陶瓷晶堆內部機電耦合作用的六端網絡引入到壓電超聲換能器的設計中,分別采用四端網絡法和六端網絡法設計得到兩個不同尺寸的壓電超聲換能器A和B,通過有限元方法對比分析了兩個換能器的固有頻率和輸出振幅,并進一步通過實驗驗證了設計理論與仿真分析的有效性。研究結果表明,在相同激勵電壓下,采用六端網絡法設計得到的壓電超聲換能器B輸出的超聲振幅是換能器A輸出振幅的1.5倍,六端網絡法設計壓電超聲換能器可以提高所設計換能器的振動性能。

     

  • 圖  1  單一變截面桿及等其效四端網絡。(a)單一變截面桿;(b)等效四端網絡

    Figure  1.  Single rod with a variable cross section and its equivalent four-terminal network: (a) the rod; (b) the equivalent four-terminal network

    圖  2  壓電陶瓷晶堆的等效六端網絡

    Figure  2.  Equivalent six-terminal network of the SPCs

    圖  3  壓電超聲換能器結構

    Figure  3.  Structure of PUT

    圖  4  瞬態分析模型設置。(a)激勵施加方式;(b)前蓋板振動輸出點1

    Figure  4.  Model setup of the transient analysis: (a) application of the excitation voltage; (b) schematic illustration of point 1

    圖  5  換能器A和B端面點1處的輸出振幅仿真結果

    Figure  5.  Output amplitudes of transducer A and B at point 1 by FEM

    圖  6  壓電超聲換能器

    Figure  6.  Designed PUTs

    圖  7  壓電超聲換能器輸出位移測試

    Figure  7.  Experimental setup for measuring the displacement of the PUTs

    圖  8  換能器A和B端面輸出振幅實驗結果

    Figure  8.  Experimental results of the output amplitudes of transducer A and B

    表  1  壓電超聲換能器各部分材料參數

    Table  1.   Material parameters of each part of the PUT

    MaterialsDensity/
    (kg·m?3)
    Young’s modulus, E/
    (N·m?2)
    Poisson’s ratio
    Aluminum alloy 606127007.07×10100.33
    PZT-87600x: 7.407×1010xy: 0.303
    y: 8.696×1010yz: 0.356
    z: 8.696×1010xz: 0.322
    45 Steel78507.07×10110.31
    下載: 導出CSV

    表  2  壓電超聲換能器設計尺寸

    Table  2.   Designed dimensions of each part of the PUTs

    PartsLength/mmDiameter/mm
    Front cover58.6350
    piezoelectric ceramic slice6.550
    Cylindrical section of the back cover
    (four-terminal network method)
    9.9550
    Cylindrical section of the back cover
    (six-terminal network method)
    15.7850
    Conic section of back cover8Bottom surface: 50
    Top surface: 36
    Bolt1236
    下載: 導出CSV

    表  3  壓電超聲換能器縱振固有頻率仿真分析

    Table  3.   Natural frequency of the longitudinal vibration of the PUTs by FEM

    TransducerNatural frequency/HzDesign error/%Modal solution
    Transducer A200740.37
    Transducer B192703.65
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Shih A J, Denkena B, Grove T, et al. Fixed abrasive machining of non-metallic materials. CIRP Ann, 2018, 67(2): 767 doi: 10.1016/j.cirp.2018.05.010
    [2] Wu H. Wire sawing technology: A state-of-the-art review. Precis Eng, 2016, 43: 1 doi: 10.1016/j.precisioneng.2015.08.008
    [3] Ohmori H, Ebizuka N, Morita S, et al. Ultraprecision micro-grinding of germanium immersion grating element for mid-infrared super dispersion spectrograph. CIRP Ann, 2001, 50(1): 221 doi: 10.1016/S0007-8506(07)62109-X
    [4] Zhang Y. Studies on the Preparation and Properties of CoTiNb2O8-Based Microwave Dielectric Ceramics [Dissertation]. Beijing: University of Science and Technology Beijing, 2017

    張云. 鈮酸鈦鈷基微波介質陶瓷的制備與性能研究[學位論文]. 北京: 北京科技大學, 2017
    [5] Brinksmeier E, Mutlugunes Y, Klocke F, et al. Ultra-precision grinding. Cirp Annals, 2010, 59(2): 652 doi: 10.1016/j.cirp.2010.05.001
    [6] Zhou M, Wang X J, Ngoi B K A, et al. Brittle-ductile transition in the diamond cutting of glasses with the aid of ultrasonic vibration. J Mater Process Technol, 2002, 121(2-3): 243 doi: 10.1016/S0924-0136(01)01262-6
    [7] Thoe T B, Aspinwall D K, Wise M L H. Review on ultrasonic machining. Int J Mach Tools Manuf, 1998, 38(4): 239 doi: 10.1016/S0890-6955(97)00036-9
    [8] Ibrahim M R, Rahim Z, Rahim E, et al. An experimental investigation of cutting temperature and tool wear in 2 dimensional ultrasonic vibrations assisted micro-milling // 2016 the 3rd International Conference on Mechatronics and Mechanical Engineering (ICMME 2016). Chongqing, 2016: 07005
    [9] Feng P F, Wang J J, Zhang J F, et al. Research status and future prospects of rotary ultrasonic machining of hard and brittle materials. J Mech Eng, 2017, 53(19): 3 doi: 10.3901/JME.2017.19.003

    馮平法, 王健健, 張建富, 等. 硬脆材料旋轉超聲加工技術的研究現狀及展望. 機械工程學報, 2017, 53(19):3 doi: 10.3901/JME.2017.19.003
    [10] Zhang C L, Feng P F, Zhang J F. Surface properties of optical glass processed with rotary ultrasonic face milling. J Tsinghua Univ (Sci Technol), 2012, 52(11): 1616

    張承龍, 馮平法, 張建富. 光學玻璃旋轉超聲端面銑削表面特性. 清華大學學報(自然科學版), 2012, 52(11):1616
    [11] Zhou M, Wang M, Dong G J. Experimental investigation on rotary ultrasonic face grinding of SiCp/Al composites. Mater Manuf Process, 2016, 31(5): 673 doi: 10.1080/10426914.2015.1025962
    [12] He X P, Gao J. A review of ultrasonic solid horn design. Tech Acoust, 2006, 25(1): 82 doi: 10.3969/j.issn.1000-3630.2006.01.018

    賀西平, 高潔. 超聲變幅桿設計方法研究. 聲學技術, 2006, 25(1):82 doi: 10.3969/j.issn.1000-3630.2006.01.018
    [13] Lesniewski P. Discrete component equivalent circuit for Webster’s horns. Appl Acoust, 1995, 44(2): 117 doi: 10.1016/0003-682X(95)91367-C
    [14] Gao J, He X P, Hu J. Unified treatment of ultrasonic horn characteristics based on four-end network approach. Tech Acoust, 2006, 25(1): 87 doi: 10.3969/j.issn.1000-3630.2006.01.019

    高潔, 賀西平, 胡靜. 四端網絡法統一變幅桿的性能參量. 聲學技術, 2006, 25(1):87 doi: 10.3969/j.issn.1000-3630.2006.01.019
    [15] Qi H Q, Shan X B, Xie T. Wire drawing with orthogonal composite ultrasonic vibration. J Univ Sci Technol Beijing, 2010, 32(1): 89

    齊海群, 單小彪, 謝濤. 正交復合超聲振動拉絲. 北京科技大學學報, 2010, 32(1):89
    [16] Huang Y C, Ding G Z, Chen B H, et al. Simulation and experiment of Langevin-type piezoelectric ultrasonic horn for micro tool motion. Intell Technol Eng Syst, 2013, 234: 967
    [17] Guo P, Ehmann K F. Development of a New Vibrator for Elliptical Vibration Texturing // ASME 2011 International Manufacturing Science and Engineering Conference. Corvallis, 2011: 13
    [18] Zhao F L, Feng D J, Guo D M, et al. Design of horn using four-end network method. Acta Acustica, 2002, 27(6): 554 doi: 10.3321/j.issn:0371-0025.2002.06.015

    趙福令, 馮冬菊, 郭東明, 等. 超聲變幅桿的四端網絡法設計. 聲學學報, 2002, 27(6):554 doi: 10.3321/j.issn:0371-0025.2002.06.015
    [19] Huang D Z. Design of vibration system for ultrasonic wave vibrator. J Vib Shock, 2005, 24(5): 107 doi: 10.3969/j.issn.1000-3835.2005.05.032

    黃德中. 超聲波振動器四端網絡設計. 振動與沖擊, 2005, 24(5):107 doi: 10.3969/j.issn.1000-3835.2005.05.032
    [20] Jiao F Y. Study on Elastic Waves Propagation in Piezoelectric and Piezoelectric Semiconductor Layer Structures [Dissertation]. Beijing: University of Science and Technology Beijing, 2019

    焦鳳瑀. 壓電和壓電半導體層狀結構中彈性波傳播研究[學位論文]. 北京: 北京科技大學, 2019
    [21] Lin S Y. Theory and design of Ultrasonic Transducer. Beijing: Science Press, 2004

    林書玉. 超聲換能器的原理及設計. 北京: 科學出版社, 2004
    [22] Martin G E. Vibrations of coaxially segmented, longitudinally polarized ferroelectric tubes. J Acoust Soc Am, 1964, 36(8): 1496 doi: 10.1121/1.1919233
    [23] Zuo W K, Zhou W G, Wei M Y, et al. Formation and mechanism analysis of half-wave loss. Phys Bull, 2019(1): 33 doi: 10.3969/j.issn.0509-4038.2019.01.010

    左武魁, 周惟公, 魏民云, 等. 半波損失的形成和機理分析. 物理通報, 2019(1):33 doi: 10.3969/j.issn.0509-4038.2019.01.010
    [24] He L P, Ren X M. Study on finite element modeling method of bolted joints. Trans Beijing Inst Technol, 2020, 40(12): 1275

    賀李平, 任雪梅. 螺栓聯接的有限元建模方法研究. 北京理工大學學報, 2020, 40(12):1275
    [25] Qiao J P. Study on the influencing factors of frequency of transducer vibrator [Dissertation]. Changsha: Central South University, 2011

    喬家平. 換能器振子頻率的影響因素研究[學位論文]. 長沙: 中南大學, 2011
  • 加載中
圖(8) / 表(3)
計量
  • 文章訪問數:  1968
  • HTML全文瀏覽量:  490
  • PDF下載量:  65
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-11-24
  • 錄用日期:  2022-01-05
  • 網絡出版日期:  2021-02-01
  • 刊出日期:  2022-05-25

目錄

    /

    返回文章
    返回