<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

一維卷積神經網絡特征提取下微震能級時序預測

裴艷宇 楊小彬 傳金平 吳學松 程虹銘 呂祥鋒

裴艷宇, 楊小彬, 傳金平, 吳學松, 程虹銘, 呂祥鋒. 一維卷積神經網絡特征提取下微震能級時序預測[J]. 工程科學學報, 2021, 43(7): 1003-1009. doi: 10.13374/j.issn2095-9389.2020.11.22.001
引用本文: 裴艷宇, 楊小彬, 傳金平, 吳學松, 程虹銘, 呂祥鋒. 一維卷積神經網絡特征提取下微震能級時序預測[J]. 工程科學學報, 2021, 43(7): 1003-1009. doi: 10.13374/j.issn2095-9389.2020.11.22.001
PEI Yan-yu, YANG Xiao-bin, CHUAN Jin-ping, WU Xue-song, CHENG Hong-ming, Lü Xiang-feng. Time series prediction of microseismic energy level based on feature extraction of one-dimensional convolutional neural network[J]. Chinese Journal of Engineering, 2021, 43(7): 1003-1009. doi: 10.13374/j.issn2095-9389.2020.11.22.001
Citation: PEI Yan-yu, YANG Xiao-bin, CHUAN Jin-ping, WU Xue-song, CHENG Hong-ming, Lü Xiang-feng. Time series prediction of microseismic energy level based on feature extraction of one-dimensional convolutional neural network[J]. Chinese Journal of Engineering, 2021, 43(7): 1003-1009. doi: 10.13374/j.issn2095-9389.2020.11.22.001

一維卷積神經網絡特征提取下微震能級時序預測

doi: 10.13374/j.issn2095-9389.2020.11.22.001
基金項目: 國家自然科學基金資助項目(51774015,51774048);中央高校基本科研業務費資助項目(2021YJSAQ03)
詳細信息
    通訊作者:

    E-mail:yangxiaobin02@126.com

  • 中圖分類號: TD76

Time series prediction of microseismic energy level based on feature extraction of one-dimensional convolutional neural network

More Information
  • 摘要: 微震能級隨時間發生變化,高能級微震事件與沖擊地壓有良好的對應關系,為預測礦山微震能量時序變化,基于一維卷積神經網絡(Convolutional neural networks,CNN),建立微震能級時間序列預測模型;通過模型訓練,實現以前十次微震事件的能量級別作為輸入來預測下一次微震事件的能量級別。由于微震樣本數據類間不平衡問題,導致模型測試時將106能量級別的微震事件全部判斷為105能量級別的微震事件,為進一步提高模型對106能級微震事件預測的準確率,對模型進行改進并使用混合采樣方法訓練改進后的模型;利用硯北煤礦250202工作面微震能級實測部分數據,改進后模型的總體測試正確率達到98.4%,其中106能量級別的微震事件測試正確率提升到99%。將模型應用于硯北煤礦250202工作面進行微震能級時序預測,模型的預測正確率整體達到93.5%,且對高能級微震事件的預測正確率接近100%。

     

  • 圖  1  一維卷積神經網絡微震能級時序預測模型結構

    Figure  1.  Structure of the prediction model of the microseismic energy level time series based on the one-dimensional convolution neural network

    圖  2  微震各能量級別數量

    Figure  2.  Number of each microseismic energy level

    圖  3  混合采樣訓練集建立過程

    Figure  3.  Building process of the hybrid sampling training set

    圖  4  改進的基于一維卷積神經網絡的微震能級時序預測模型總體框架

    Figure  4.  General framework of improved prediction model of microseismic energy level time series based on the one-dimensional convolution neural network

    圖  5  微震能量預測值與實測值對比

    Figure  5.  Comparison between the predicted and measured microseismic energy

    表  1  各卷積層超參數

    Table  1.   Hyperparametric table of each convolution layer

    Convolution layer numberConvolution kernel numberConvolution kernel length
    1323
    2643
    31283
    4643
    5322
    下載: 導出CSV

    表  2  250202工作面微震能量級別測試結果

    Table  2.   Test results of the microseismic energy level of the 250202 working face %

    ClassTest accuracy
    102, 103, 10498.7
    10598.3
    1060
    Total97.9
    下載: 導出CSV

    表  3  250202工作面微震能量級別測試結果

    Table  3.   Test results of the microseismic energy level of the 250202 working face %

    ClassTest accuracy before improvementTest accuracy after improvement
    102, 103, 10498.798.7
    10598.393.3
    106099.0
    Total97.998.4
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Jiang Y D, Zhao Y X. State of the art: investigation on mechanism, forecast and control of coal bumps in China. Chin J Rock Mech Eng, 2015, 34(11): 2188

    姜耀東, 趙毅鑫. 我國煤礦沖擊地壓的研究現狀: 機制、預警與控制. 巖石力學與工程學報, 2015, 34(11):2188
    [2] Jiang Y D, Zhao Y X, Liu W G, et al. Investigation on the Mechanism of Coal Bumps and Relating Experiment. Beijing: Science Press, 2009

    姜耀東, 趙毅鑫, 劉文崗, 等. 煤巖沖擊失穩的機理和實驗研究. 北京: 科學出版社, 2009
    [3] Miao X H, Jiang F X, Wang C W, et al. Mechanism of microseism-inducdrock burst revealed by microseismic monitoring. Chin J Geotech Eng, 2011, 33(6): 971

    苗小虎, 姜福興, 王存文, 等. 微地震監測揭示的礦震誘發沖擊地壓機理研究. 巖土工程學報, 2011, 33(6):971
    [4] Yuan R F, Li H M, Li H Z. Distribution of microseismic signal and discrimination of portentous information of pillar type rockburst. Chin J Rock Mech Eng, 2012, 31(1): 80 doi: 10.3969/j.issn.1000-6915.2012.01.010

    袁瑞甫, 李化敏, 李懷珍. 煤柱型沖擊地壓微震信號分布特征及前兆信息判別. 巖石力學與工程學報, 2012, 31(1):80 doi: 10.3969/j.issn.1000-6915.2012.01.010
    [5] Pytel W, ?witoń J, Wójcik A. The effect of mining face’s direction on the observed seismic activity. Int J Coal Sci Technol, 2016, 3(3): 322 doi: 10.1007/s40789-016-0122-5
    [6] Li N, Wang E Y, Ge M C. Microseismic monitoring technique and its applications at coal mines: present status and future prospects. J China Coal Soc, 2017, 42(S1): 83

    李楠, 王恩元, GE Mao-chen. 微震監測技術及其在煤礦的應用現狀與展望. 煤炭學報, 2017, 42(增刊1): 83
    [7] Lü J G, Pan L. Microseismic predicting coal bump by time series method. J China Coal Soc, 2010, 35(12): 2002

    呂進國, 潘立. 微震預警沖擊地壓的時間序列方法. 煤炭學報, 2010, 35(12):2002
    [8] Lu C P, Dou L M, Wu X R, et al. Frequency spectrum analysis on microseismic monitoring and signal differentiation of rock material. Chin J Geotech Eng, 2005, 27(7): 772 doi: 10.3321/j.issn:1000-4548.2005.07.010

    陸菜平, 竇林名, 吳興榮, 等. 巖體微震監測的頻譜分析與信號識別. 巖土工程學報, 2005, 27(7):772 doi: 10.3321/j.issn:1000-4548.2005.07.010
    [9] Cai W, Dou L M, Li Z L, et al. Microseismic multidimensional information identification and spatio-temporal forecasting of rock burst: a case study of Yima Yuejin coal mine, Henan, China. Chin J Geophys, 2014, 57(8): 2687 doi: 10.6038/cjg20140827

    蔡武, 竇林名, 李振雷, 等. 微震多維信息識別與沖擊礦壓時空預測— —以河南義馬躍進煤礦為例. 地球物理學報, 2014, 57(8):2687 doi: 10.6038/cjg20140827
    [10] Guo L G, Dai G L, Yang B C, et al. Stress anomaly monitoring of coal face based on microseismic tomography. J Zhejiang Univ Eng Sci, 2018, 52(10): 2014

    郭來功, 戴廣龍, 楊本才, 等. 基于微震成像的采煤工作面應力異常監測. 浙江大學學報: 工學版, 2018, 52(10):2014
    [11] Tian X H, Li Z L, Song D Z, et al. Study on microseismic precursors and early warning methods of rockbursts in a working face. Chin J Rock Mech Eng, 2020, 39(12): 2471

    田向輝, 李振雷, 宋大釗, 等. 某沖擊地壓頻發工作面微震沖擊前兆信息特征及預警方法研究. 巖石力學與工程學報, 2020, 39(12):2471
    [12] Qiao M Y, Cheng P F, Liu Z Z. Mine water inflow prediction based on GA-SVM. Coal Geol Explor, 2017, 45(6): 117 doi: 10.3969/j.issn.1001-1986.2017.06.019

    喬美英, 程鵬飛, 劉震震. 基于GA-SVM的礦井涌水量預測. 煤田地質與勘探, 2017, 45(6):117 doi: 10.3969/j.issn.1001-1986.2017.06.019
    [13] Zhao Y X, Yang Z L, Ma B J, et al. Deep learning prediction and model generalization of ground pressure for deep longwall face with large mining height. J China Coal Soc, 2020, 45(1): 54

    趙毅鑫, 楊志良, 馬斌杰, 等. 基于深度學習的大采高工作面礦壓預測分析及模型泛化. 煤炭學報, 2020, 45(1):54
    [14] Li S G, Ma L, Pan S B, et al. Research on prediction model of gas concentration based on RNN in coal mining face. Coal Sci Technol, 2020, 48(1): 33

    李樹剛, 馬莉, 潘少波, 等. 基于循環神經網絡的煤礦工作面瓦斯濃度預測模型研究. 煤炭科學技術, 2020, 48(1):33
    [15] Wang H J, Yin Z Y, Ke Z Z, et al. Wear monitoring of helical milling tool based on one-dimensional convolutional neural network. J Zhejiang Univ Eng Sci, 2020, 54(5): 931

    汪海晉, 尹宗宇, 柯臻錚, 等. 基于一維卷積神經網絡的螺旋銑刀具磨損監測. 浙江大學學報: 工學版, 2020, 54(5):931
    [16] Chen Z Q, Li C, Sanchez R V. Gearbox fault identification and classification with convolutional neural networks. Shock Vib, 2015(2): 1
    [17] Li J, Liu Y B, Yu Y H. Application of convolutional neural network and kurtosis in fault diagnosis of rolling bearing. J Aerosp Power, 2019, 34(11): 2423

    李俊, 劉永葆, 余又紅. 卷積神經網絡和峭度在軸承故障診斷中的應用. 航空動力學報, 2019, 34(11):2423
    [18] Zhu H J, Wang X Q, Rui T, et al. Machinery fault diagnosis based on shift invariant CNN. J Vib Shock, 2019, 38(5): 45

    朱會杰, 王新晴, 芮挺, 等. 基于平移不變CNN的機械故障診斷研究. 振動與沖擊, 2019, 38(5):45
    [19] Perol T, Gharbi M, Denolle M. Convolutional neural network for earthquake detection and location. Sci Adv, 2018, 4(2): e1700578
    [20] Dong Z P, Wang M, Li D R, et al. Object detection in remote sensing imagery based on convolutional neural networks with suitable scale features. Acta Geod Cartographica Sinica, 2019, 48(10): 1285 doi: 10.11947/j.AGCS.2019.20180393

    董志鵬, 王密, 李德仁, 等. 遙感影像目標的尺度特征卷積神經網絡識別法. 測繪學報, 2019, 48(10):1285 doi: 10.11947/j.AGCS.2019.20180393
    [21] Zhao K N, Pu T J, Wang X Y, et al. Probabilistic forecasting for photovoltaic power based on improved bayesian neural network. Power Syst Technol, 2019, 43(12): 4377

    趙康寧, 蒲天驕, 王新迎, 等. 基于改進貝葉斯神經網絡的光伏出力概率預測. 電網技術, 2019, 43(12):4377
    [22] Jin L J, Zhan J M, Chen J H, et al. Drill pipe fault diagnosis method based on one-dimensional convolutional neural network. J Zhejiang Univ Eng Sci, 2020, 54(3): 467

    金列俊, 詹建明, 陳俊華, 等. 基于一維卷積神經網絡的鉆桿故障診斷. 浙江大學學報: 工學版, 2020, 54(3):467
    [23] Gao J H, Guo Y, Wu X. Gearbox bearing fault diagnosis based on SANC and 1-D CNN. J Vib Shock, 2020, 39(19): 204

    高佳豪, 郭瑜, 伍星. 基于SANC和一維卷積神經網絡的齒輪箱軸承故障診斷. 振動與沖擊, 2020, 39(19):204
    [24] Xia Y X, Kang L J, Qi Q X, et al. Five indexes of microseismic and their application in rock burst forecastion. J China Coal Soc, 2010, 35(12): 2011

    夏永學, 康立軍, 齊慶新, 等. 基于微震監測的5個指標及其在沖擊地壓預測中的應用. 煤炭學報, 2010, 35(12):2011
    [25] Zhang Y F, Lu Z Q. Remaining useful life prediction based on an integrated neural network. Chin J Eng, 2020, 42(10): 1372

    張永峰, 陸志強. 基于集成神經網絡的剩余壽命預測. 工程科學學報, 2020, 42(10):1372
    [26] Kingma D, Ba J. Adam: A method for stochastic optimization // International Conference for Learning Representations. San Diego, 2015: 1
    [27] Liu D X, Qiao S J, Zhang Y Q, et al. A survey on data sampling methods in imbalance classification. J Chongqing Univ Technol Nat Sci, 2019, 33(7): 102

    劉定祥, 喬少杰, 張永清, 等. 不平衡分類的數據采樣方法綜述. 重慶理工大學學報: 自然科學, 2019, 33(7):102
    [28] Liu X Y, Wu J X, Zhou Z H. Exploratory undersampling for class-imbalance learning. IEEE Trans Syst Man Cybern Part B (Cybern), 2009, 39(2): 539 doi: 10.1109/TSMCB.2008.2007853
  • 加載中
圖(5) / 表(3)
計量
  • 文章訪問數:  524
  • HTML全文瀏覽量:  624
  • PDF下載量:  53
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-11-22
  • 網絡出版日期:  2021-06-02
  • 刊出日期:  2021-07-01

目錄

    /

    返回文章
    返回