Research progress on the alkaline-system selective recycling technology in spent lithium-ion batteries
-
摘要: 由于鋰離子電池中的雜質金屬在氫氧化物中溶解度差,而鋰、鎳、鈷由于本身氫氧化物溶解度較大,或能與氨根離子形成絡合物,能大量存在于堿溶液中。因此堿浸對廢舊電池正極活性物質中的金屬具有較高的的選擇性浸出能力,且回收工藝高效、清潔。本文依據堿浸回收的工業研究現狀,總結了四種堿浸回收體系,包括氨浸?熱加工?還原劑體系、氨浸-還原劑-電沉積體系、氨浸?還原劑?鋰吸附體系、氨浸?還原劑?氧化分離體系,并著重介紹了不同體系的原理及優點。最后,總結了廢舊鋰離子電池的回收方法及前景。Abstract: Due to the issue of raw material depletion, lithium-ion batteries are becoming less value-added. In addition, the highly toxic organic electrolytes contained in them cause serious harm to humans and the environment. That is why the effective recovery of spent lithium-ion batteries is of great importance for the development and sustainable use of lithium-ion batteries. Currently, recovery of metals present in spent lithium-ion batteries mainly relies on hydrometallurgical extraction: The main metals are extracted through acid or alkali media followed by recovery of metal compounds through further processing or the resynthesis of high-performance materials. Among them, acid leaching is a short and highly efficient process; however, this process dissolves all the metal ions in the solution, making it difficult to subsequently separate and purify the valuable metals. Contrarily, the hydroxide of impure metal in lithium-ion batteries shows low solubility, whereas lithium, nickel, and cobalt have high solubility, allowing for the formation of complexes with ammonia ions that can exist in alkali solution in large quantities. Thus, alkaline leaching has better selective leaching of metals in electrode materials due to the high solubility of lithium, nickel, and cobalt ammonia complexes and has a more efficient and cleaner recovery process, which is of outstanding importance in the industry. Most research was mainly focused on various acid recovery systems and scales, and the research progress on the alkaline recovery process was insufficient. Here, based on the industrial research status of alkali leaching recovery, four alkali leaching recovery systems, which include the ammonia leaching-reductant-hot working system, ammonia leaching-reductant-electrodeposition system, ammonia leaching-reductant-lithium adsorption system, and ammonia leaching-reductant-oxidation separation system, were reviewed along with their principles and advantages. Finally, a brief summary of the recovery methods for spent lithium-ion batteries was expressed.
-
Key words:
- spent lithium-ion batteries /
- recovery /
- alkaline leaching /
- selectivity /
- metal-ammonia complex
-
圖 1 (a)廢舊鋰離子電池處理流程圖[23];(b)廢舊鋰離子電池回收過程[17];(c)浸出劑含量對金屬浸出效率的影響(摩爾比NH3∶(NH4)2SO3:(NH4)2CO3=1∶0.5∶1, 80 oC和1 h)[17];(d)二元體系(氨+亞硫酸銨)或三元體系(氨+亞硫酸銨+碳酸銨)中pH的變化[17];(e)碳酸銨濃度對金屬浸出效率的影響(1 mol·L?1氨溶液,0.5 mol·L?1亞硫酸銨,80 oC和1 h) [17]
Figure 1. (a) Flow chart of recycling waste lithium-ion batteries[23]; (b) the recycling process of waste lithium-ion batteries[17]; (c) the effect of leaching agent content on metal leaching efficiency (NH3∶(NH4)2SO3:(NH4)2CO3=1∶0.5∶1, 80 °C, and 1 h)[17]; (d) change in pH in a binarysystem (ammonia + ammonium sulfite) or ternary system (ammonia + ammonium sulfite + ammonium carbonate)[17]; (e) the effect of ammonium carbonate concentration on metal leaching efficiency (1 mol·L?1 ammonia solution, 0.5 mol·L?1 ammonia sulfite solution, 80 °C, and 1 h) [17]
圖 2 (a) 廢舊鋰離子電池中有價金屬回收過程圖[24];(b) 在300 ℃和500 ℃下煅燒的陰極活性粉末的SEM圖[25];(c) (NH4)2SO4濃度對Ni、Co、Li和Mn浸出效果的影響(3 mol·L?1 (NH4)2SO4,陰極粉末質量與加入溶液的體積比為100 g·L?1)[25];(d) (NH4)2SO3濃度對Ni、Co、Li和Mn浸出效果的影響(3 mol·L?1 (NH4)SO3,陰極粉末質量與加入溶液的體積比為100 g·L?1)[25]
Figure 2. (a) Diagram of the valuable metal recovery process from waste lithium-ion batteries[24]; (b) the SEM images of the cathode active powder calcined at 300 ℃ and 500 ℃[25]; (c) the effect of (NH4)2SO4 concentration on Ni, Co, Li, and Mn leaching efficiencies (3 mol·L?1 (NH4)2SO4, the ratio of the mass of cathode powder to volume of added solution is 100 g·L?1) [25]; (d) the effect of (NH4)2SO3 concentration on Ni, Co, Li, and Mn leaching efficiencies (3 mol·L?1 (NH4)2SO3, the ratio of the mass of cathode powder to volume of added solution is 100 g·L?1) [25]
圖 4 (a)鋰吸附法回收過程示意圖[29];(b)鋰吸附法回收鋰離子電池中Li、Co和Ni的流程[29];(c) 初始鋰離子濃度[29]; (d)每升溶液鋰離子篩用量與鋰離子篩上吸附的Li+、Ni2+和Co2+的量的關系[29]
Figure 4. (a) Schematic diagram of lithium adsorption recovery process[29]; (b) the process of recovering Li, Co, and Ni in lithium-ion batteries by lithium adsorption[29]; (c) initial lithium-ion concentration[29]; (d) the amount of lithium-ion sieve per liter of solution relationship with the amounts of Li+, Ni2+, and Co2+ adsorbed on the lithium-ion sieve[29]
www.77susu.com -
參考文獻
[1] Zhang W X, Xu C J, He W Z, et al. A review on management of spent lithium ion batteries and strategy for resource recycling of all components from them. Waste Manage Res, 2018, 36(2): 99 doi: 10.1177/0734242X17744655 [2] Zhang Y J, Ning P C, Yang X, et al. Research progress on the recycling technology of spent ternary lithium ion battery. Chem Ind Eng Prog, 2020, 39(7): 2828張英杰, 寧培超, 楊軒, 等. 廢舊三元鋰離子電池回收技術研究新進展. 化工進展, 2020, 39(7):2828 [3] Xiao W K, Zhang H. Recycling status of spent lithium-ion batteries for electric vehicle in China. Chin J Power Sources, 2020, 44(8): 1217 doi: 10.3969/j.issn.1002-087X.2020.08.034肖武坤, 張輝. 中國廢舊車用鋰離子電池回收利用概況. 電源技術, 2020, 44(8):1217 doi: 10.3969/j.issn.1002-087X.2020.08.034 [4] Wang B. Development status and suggestions of power battery recovery system for new energy vehicles in China. Logist Sci Tech, 2019, 42(2): 72 doi: 10.3969/j.issn.1002-3100.2019.02.020王斑. 我國新能源汽車動力電池回收體系的發展現狀及建議. 物流科技, 2019, 42(2):72 doi: 10.3969/j.issn.1002-3100.2019.02.020 [5] Zhang S J, Zhang Y W, Zhang L W, et al. Present situation and sustainable development strategy of China’s lithium resources. Inorg Chem Ind, 2020, 52(7): 1 doi: 10.11962/1006-4990.2020-0028張蘇江, 張彥文, 張立偉, 等. 中國鋰礦資源現狀及其可持續發展策略. 無機鹽工業, 2020, 52(7):1 doi: 10.11962/1006-4990.2020-0028 [6] Ren G X. Research on Efficient Separation and Recovery of Valuable Metals from Waste Lithium Ion Batteries by Direct Reduction Smelting [Dissertation]. Changsha: Changsha Research Institute of Mining and Metallurgy, 2014任國興. 廢舊鋰離子電池直接還原熔煉高效分離回收有價金屬研究[學位論文]. 長沙: 長沙礦冶研究院, 2014 [7] Gou H P, Pei Z Y, Zhou G Z, et al. Study on the recycle of the spent ternary Li-ion battery by the pyrometallurgical process. China Nonferrous Metall, 2019, 48(5): 74 doi: 10.3969/j.issn.1672-6103.2019.05.019茍海鵬, 裴忠冶, 周國治, 等. 廢舊三元鋰離子電池熱解工藝研究. 中國有色冶金, 2019, 48(5):74 doi: 10.3969/j.issn.1672-6103.2019.05.019 [8] Yao Y L, Zhu M Y, Zhao Z, et al. Hydrometallurgical processes for recycling spent lithium-ion batteries: A critical review. ACS Sustain Chem Eng, 2018, 6(11): 13611 doi: 10.1021/acssuschemeng.8b03545 [9] Meng X H, Han K N. The principles and applications of ammonia leaching of metals—A review. Miner Process Extr Metall Rev, 1996, 16(1): 23 doi: 10.1080/08827509608914128 [10] Zuniga M, Parada L F, Asselin E. Leaching of a limonitic laterite in ammoniacal solutions with metallic iron. Hydrometallurgy, 2010, 104(2): 260 doi: 10.1016/j.hydromet.2010.06.014 [11] Bhuntumkomol K, Han K N, Lawson F. The leaching behaviour of nickel oxides in acid and in ammoniacal solutions. Hydrometallurgy, 1982, 8(2): 147 doi: 10.1016/0304-386X(82)90041-X [12] Wang R C, Lin Y C, Wu S H. A novel recovery process of metal values from the cathode active materials of the lithium-ion secondary batteries. Hydrometallurgy, 2009, 99(3): 194 [13] Tan Q Y, Tang H H, Long G H, et al. Leaching aluminum from cathode electrode of spent lithium ion batteries by two-stage countercurrent process. Min Metall Eng, 2012, 32(3): 92 doi: 10.3969/j.issn.0253-6099.2012.03.025譚群英, 唐紅輝, 龍桂花, 等. 二級逆流浸出廢舊鋰離子電池正極片中的鋁. 礦冶工程, 2012, 32(3):92 doi: 10.3969/j.issn.0253-6099.2012.03.025 [14] Zhang Y L, Yin F, Jie X W, et al. Study on removal of aluminum from spent lithium-ion batteries by alkali recycling leaching process. Nonferrous Met (Extr Metall) , 2018(12): 22張永祿, 尹飛, 揭曉武, 等. 堿循環浸出法分離廢舊鋰離子電池中鋁的研究. 有色金屬(冶煉部分), 2018(12):22 [15] Zhang H J, Chen X, Zou X, et al. Research progress of aluminum removal technology for cathode materials of spent lithium-ion batteries. Chin J Process Eng, 2020, 20(5): 503 doi: 10.12034/j.issn.1009-606X.219260張賀杰, 陳興, 鄒興, 等. 廢舊鋰離子電池正極材料除鋁技術研究進展. 過程工程學報, 2020, 20(5):503 doi: 10.12034/j.issn.1009-606X.219260 [16] Zheng X H, Gao W F, Zhang X H, et al. Spent lithium-ion battery recycling - Reductive ammonia leaching of metals from cathode scrap by sodium sulphite. Waste Manage, 2017, 60: 680 doi: 10.1016/j.wasman.2016.12.007 [17] Ku H, Jung Y, Jo M, et al. Recycling of spent lithium-ion battery cathode materials by ammoniacal leaching. J Hazard Mater, 2016, 313: 138 doi: 10.1016/j.jhazmat.2016.03.062 [18] Wang H, Liu Y Q, Wang D, et al. Experimental study on ammonia leaching of waste lithium battery positive powder. Guangdong Chem Ind, 2020, 47(13): 69 doi: 10.3969/j.issn.1007-1865.2020.13.030王皓, 劉勇奇, 王杜, 等. 廢舊鋰電池正極粉氨性浸出實驗研究. 廣東化工, 2020, 47(13):69 doi: 10.3969/j.issn.1007-1865.2020.13.030 [19] Wang S B, Wang C, Lai F J, et al. Reduction-ammoniacal leaching to recycle lithium, cobalt, and nickel from spent lithium-ion batteries with a hydrothermal method: Effect of reductants and ammonium salts. Waste Manage, 2020, 102: 122 doi: 10.1016/j.wasman.2019.10.017 [20] Das R P, Anand S, Das S C, et al. Leaching of manganese nodules in ammoniacal medium using glucose as reductant. Hydrometallurgy, 1986, 16(3): 335 doi: 10.1016/0304-386X(86)90008-3 [21] Qi Y P, Meng F S, Yi X X, et al. A novel and efficient ammonia leaching method for recycling waste lithium ion batteries. J Clean Prod, 2020, 251: 119665 doi: 10.1016/j.jclepro.2019.119665 [22] Wang C, Wang S B, Yan F, et al. Recycling of spent lithium-ion batteries: Selective ammonia leaching of valuable metals and simultaneous synthesis of high-purity manganese carbonate. Waste Manage, 2020, 114: 253 doi: 10.1016/j.wasman.2020.07.008 [23] Meshram P, Abhilash, Pandey B D, et al. Comparision of different reductants in leaching of spent lithium ion batteries. JOM, 2016, 68(10): 2613 doi: 10.1007/s11837-016-2032-9 [24] Ma Y Y, Tang J J, Wanaldi R, et al. A promising selective recovery process of valuable metals from spent lithium ion batteries via reduction roasting and ammonia leaching. J Hazard Mater, 2021, 402: 123491 doi: 10.1016/j.jhazmat.2020.123491 [25] Chen Y M, Liu N N, Hu F, et al. Thermal treatment and ammoniacal leaching for the recovery of valuable metals from spent lithium-ion batteries. Waste Manage, 2018, 75: 469 doi: 10.1016/j.wasman.2018.02.024 [26] Qiu R J, Lin M, Ruan J J, et al. Recovering full metallic resources from waste printed circuit boards: A refined review. J Clean Prod, 2020, 244: 118690 doi: 10.1016/j.jclepro.2019.118690 [27] Chen M J, Li S Y, Deng Y, et al. Study on electro-deposition of ammonia leaching solution of waste lithium ion batteries cathode and anode mixture. Nonferrous Met (Extr Metall) , 2020(9): 25陳夢君, 李淑媛, 鄧毅, 等. 廢舊鋰離子電池正負極混合物氨浸液電沉積研究. 有色金屬(冶煉部分), 2020(9):25 [28] Qi Y P. Study on the Recycling of Waste Lithium-ion Batteries by Slurry Electrolysis [Dissertation]. Mian Yang: Southwest University off Science and Technology, 2020齊亞平. 廢舊鋰離子電池礦漿電解過程資源化研究[學術論文]. 綿陽: 西南科技大學, 2020 [29] Wang H Y, Huang K, Zhang Y, et al. Recovery of lithium, nickel, and cobalt from spent lithium-ion battery powders by selective ammonia leaching and an adsorption separation system. ACS Sustain Chem Eng, 2017, 5(12): 11489 doi: 10.1021/acssuschemeng.7b02700 [30] Wu C B, Li B S. Method for Preparing Graphene by Utilizing Graphite in Waste Batteries through One-step Redox: China Patent, CN110498410A. 2019-11-26吳彩斌, 李本盛. 利用廢舊電池中石墨一步氧化還原制備石墨烯的方法: 中國專利, CN110498410A. 2019-11-26 -