-
摘要: 離子交換樹脂(Ionomer)是質子交換膜燃料電池催化層的重要組成部分,它在催化層中的主要作用是作為質子傳導相傳導質子。本文采用旋轉圓盤電極法(RDE),在模擬燃料電池真實的運行環境(模式一)和模擬燃料電池啟停環境(模式二)兩種模式下,研究了Ionomer對鉑碳催化劑電壓循環耐久性的影響。通過相同位置透射電鏡分析法(IL-TEM),分析了鉑碳催化劑經歷模式二耐久性測試后的結構變化。研究發現Ionomer的存在可以提高鉑碳催化劑的耐久性。在模式一的測試中:添加Ionomer后,其氧還原半波電位下降值?E從23 mV下降至11 mV;沒有發生碳的腐蝕,Pt顆粒的長大是催化劑性能下降的主要原因;Ionomer的存在延緩了Pt電化學比表面積(ECSA)的降低從而有利于保持Pt的活性。在模式二的測試中:添加Ionomer后,其氧還原半波電位下降值?E從25 mV下降至5 mV,除了鉑顆粒長大外還發生了載體碳的腐蝕;Ionomer的存在同樣可以保持Pt的活性;IL-TEM分析可以看到明顯的鉑顆粒長大和碳腐蝕,碳載體的腐蝕造成鉑的嚴重流失和團聚。含Nafion的催化劑中鉑顆粒平均粒徑從2.7 nm增加到了3.76 nm,不含Nafion的催化劑中的鉑顆粒平均粒徑從2.44 nm增加到了4.19 nm。
-
關鍵詞:
- 質子交換膜燃料電池 /
- 離子交換樹脂 /
- Pt/C催化劑 /
- 耐久性 /
- 相同位置透射電鏡(IL-TEM)
Abstract: Ionomer is an important part of the catalytic layer in proton exchange membrane fuel cell. Its main role is to conduct protons. We investigated the effect of ionomer on the durability of Pt/C catalyst using rotating disk electrode (RDE) under two modes: the real operating conditions (mode 1) and startup/shutdown conditions (mode 2). The structural changes of Pt/C catalyst after the durability test were analyzed by identical location transmission electron microscopy (IL-TEM). Results show that the addition of ionomer improved the durability of Pt/C catalysts. After the durability test of mode 1, the addition of ionomer reduced the change of half-wave potential (?E1/2) of oxygen reduction reaction from 23 to 11 mV, which is attributed to the growth of Pt particles rather than carbon corrosion. Ionomer delayed the decrease of electrochemical specific surface area (ECSA) of Pt/C catalyst, which is beneficial to the maintenance of Pt activity. After the durability test of mode 2, in addition to the growth of platinum particles, carbon corrosion occurred in the catalyst layer, and the growth of platinum particles was mainly due to carbon corrosion. The addition of ionomer reduced the ?E1/2 of oxygen reduction reaction from 25 to 5 mV. Furthermore, the growth of platinum particles and carbon corrosion can be clearly seen by IL-TEM, and the corrosion of the carbon support resulted in the loss and agglomeration of platinum. The average particle size of platinum in Nafion-containing catalyst increased from 2.7 to 3.76 nm, while that of Nafion-free catalyst increased from 2.44 nm to 4.19 nm. -
圖 7 樣品一在耐久性測試前(a, c)和2.7×104次耐久性循環測試后(b, d)相同位置的TEM電鏡圖(a, b)和催化劑粒徑分布圖(c, d)
Figure 7. TEM electron microscope image of the same position of the catalyst (a, b) and catalyst particle size distribution diagram (c, d) in sample 1 before the durability test (a, c), and after the 2.7×104 durability cycle test (b, d)
圖 8 樣品二在耐久性測試前(a, c)和2.7×104次耐久性循環測試后(b, d)相同位置的TEM電鏡圖(a, b)和催化劑粒徑分布圖(c, d)
Figure 8. TEM electron microscope image of the same position of the catalyst (a, b) and catalyst particle size distribution diagram (c, d) in sample 2 before the durability test (a, c), and after the 2.7×104 durability cycle test (b, d)
www.77susu.com -
參考文獻
[1] Cherevko S, Kulyk N, Mayrhofer K J J. Durability of platinum-based fuel cell electrocatalysts: Dissolution of bulk and nanoscale platinum. Nano Energy, 2016, 29: 275 doi: 10.1016/j.nanoen.2016.03.005 [2] Sun S, Liu Z D, Diao P. Preparation and catalytic studies of pyrrole-doped carbon black oxide cathode materials for oxygen reduction reactions. Chin J Eng, 2019, 41(2): 216孫珊, 劉桎東, 刁鵬. 吡咯/炭黑氧化物復合氧陰極材料的制備及催化性能. 工程科學學報, 2019, 41(2):216 [3] Souza N E, Bott-Neto J L, Rocha T A, et al. Support modification in Pt/C electrocatalysts for durability increase: A degradation study assisted by identical location transmission electron microscopy. Electrochimica Acta, 2018, 265: 523 doi: 10.1016/j.electacta.2018.01.180 [4] Bandarenka A S, Ventosa E, Maljusch A, et al. Techniques and methodologies in modern electrocatalysis: Evaluation of activity, selectivity and stability of catalytic materials. Analyst, 2014, 139(6): 1274 doi: 10.1039/c3an01647a [5] Huang K, Zhu M T, Zhang F P, et al. Preparation of CoP/Co@NPC@rGO nanocomposites with an efficient bifunctiona electrocatalyst for hydrogen evolution and oxygen evolution reaction. Chin J Eng, 2020, 42(1): 91黃康, 朱梅婷, 張飛鵬, 等. 一種高效雙功能電催化劑CoP/Co@NPC@rGO的制備. 工程科學學報, 2020, 42(1):91 [6] Arenz M, Zana A. Fuel cell catalyst degradation: Identical location electron microscopy and related methods. Nano Energy, 2016, 29: 299 doi: 10.1016/j.nanoen.2016.04.027 [7] Meier J C, Galeano C, Katsounaros I, et al. Degradation mechanisms of Pt/C fuel cell catalysts under simulated start–stop conditions. ACS Catal, 2012, 2(5): 832 doi: 10.1021/cs300024h [8] Hartl K, Hanzlik M, Arenz M. IL-TEM investigations on the degradation mechanism of Pt/C electrocatalysts with different carbon supports. Energy Environ Sci, 2011, 4(1): 234 doi: 10.1039/C0EE00248H [9] Zana A, Speder J, Roefzaad M, et al. Probing degradation by IL-TEM: The influence of stress test conditions on the degradation mechanism. J Electrochem Soc, 2013, 160(6): F608 doi: 10.1149/2.078306jes [10] Speder J, Zana A, Spanos I, et al. Comparative degradation study of carbon supported proton exchange membrane fuel cell electrocatalysts - The influence of the platinum to carbon ratio on the degradation rate. J Power Sources, 2014, 261: 14 doi: 10.1016/j.jpowsour.2014.03.039 [11] Hengge K, G?nsler T, Pizzutilo E, et al. Accelerated fuel cell tests of anodic Pt/Ru catalyst via identical location TEM: New aspects of degradation behavior. Int J Hydrog Energy, 2017, 42(40): 25359 doi: 10.1016/j.ijhydene.2017.08.108 [12] Arán-Ais R M, Yu Y C, Hovden R, et al. Identical location transmission electron microscopy imaging of site-selective Pt nanocatalysts: Electrochemical activation and surface disordering. J Am Chem Soc, 2015, 137(47): 14992 doi: 10.1021/jacs.5b09553 [13] Sakthivel M, Drillet J F. An extensive study about influence of the carbon support morphology on Pt activity and stability for oxygen reduction reaction. Appl Catal B:Environ, 2018, 231: 62 doi: 10.1016/j.apcatb.2018.02.050 [14] Schonvogel D, Hülstede J, Wagner P, et al. Stability of Pt nanoparticles on alternative carbon supports for oxygen reduction reaction. J Electrochem Soc, 2017, 164(9): F995 doi: 10.1149/2.1611709jes [15] Gasteiger H A, Kocha S S, Sompalli B, et al. Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl Catal B:Environ, 2005, 56(1-2): 9 doi: 10.1016/j.apcatb.2004.06.021 [16] Inaba M, Jensen A W, Sievers G W, et al. Benchmarking high surface area electrocatalysts in a gas diffusion electrode: Measurement of oxygen reduction activities under realistic conditions. Energy Environ Sci, 2018, 11(4): 988 doi: 10.1039/C8EE00019K [17] Nonoyama N, Okazaki S, Weber A Z, et al. Analysis of oxygen-transport diffusion resistance in proton-exchange-membrane fuel cells. J Electrochem Soc, 2011, 158(4): B416 doi: 10.1149/1.3546038 [18] Kongkanand A, Mathias M F. The priority and challenge of high-power performance of low-platinum proton-exchange membrane fuel cells. J Phys Chem Lett, 2016, 7(7): 1127 doi: 10.1021/acs.jpclett.6b00216 [19] Kocha S S, Zack J W, Alia S M, et al. Influence of ink composition on the electrochemical properties of Pt/C electrocatalysts. ECS Trans, 2013, 50(2): 1475 doi: 10.1149/05002.1475ecst [20] Ohma A, Fushinobu K, Okazaki K. Influence of Nafion? film on oxygen reduction reaction and hydrogen peroxide formation on Pt electrode for proton exchange membrane fuel cell. Electrochimica Acta, 2010, 55(28): 8829 doi: 10.1016/j.electacta.2010.08.005 [21] Mayrhofer K J J, Ashton S J, Meier J C, et al. Non-destructive transmission electron microscopy study of catalyst degradation under electrochemical treatment. J Power Sources, 2008, 185(2): 734 doi: 10.1016/j.jpowsour.2008.08.003 [22] Schl?gl K, Hanzlik M, Arenz M. Comparative IL-TEM study concerning the degradation of carbon supported Pt-based electrocatalysts. J Electrochem Soc, 2012, 159(6): B677 doi: 10.1149/2.035206jes [23] Yu Y C, Xin H L, Hovden R, et al. Three-dimensional tracking and visualization of hundreds of Pt?Co fuel cell nanocatalysts during electrochemical aging. Nano Lett, 2012, 12(9): 4417 doi: 10.1021/nl203920s [24] Nikkuni F R, Dubau L, Ticianelli E A, et al. Accelerated degradation of Pt3Co/C and Pt/C electrocatalysts studied by identical-location transmission electron microscopy in polymer electrolyte environment. Appl Catal B:Environ, 2015, 176-177: 486 doi: 10.1016/j.apcatb.2015.04.035 [25] Vion-Dury B, Chatenet M, Guétaz L, et al. Determination of aging markers and their use as a tool to characterize Pt/C nanoparticles degradation mechanism in model PEMFC cathode environment. ECS Trans, 2019, 41(1): 697 doi: 10.1149/1.3635604 -