<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

離子交換樹脂對Pt/C催化劑耐久性的影響

王園 李賞 劉聲楚 洪亢 張立昌 汪如意 潘牧

王園, 李賞, 劉聲楚, 洪亢, 張立昌, 汪如意, 潘牧. 離子交換樹脂對Pt/C催化劑耐久性的影響[J]. 工程科學學報, 2021, 43(8): 1073-1080. doi: 10.13374/j.issn2095-9389.2020.11.17.004
引用本文: 王園, 李賞, 劉聲楚, 洪亢, 張立昌, 汪如意, 潘牧. 離子交換樹脂對Pt/C催化劑耐久性的影響[J]. 工程科學學報, 2021, 43(8): 1073-1080. doi: 10.13374/j.issn2095-9389.2020.11.17.004
WANG Yuan, LI Shang, LIU Sheng-chu, HONG Kang, ZHANG Li-chang, WANG Ru-yi, PAN Mu. Influence of ionomer on the durability of Pt/C catalyst[J]. Chinese Journal of Engineering, 2021, 43(8): 1073-1080. doi: 10.13374/j.issn2095-9389.2020.11.17.004
Citation: WANG Yuan, LI Shang, LIU Sheng-chu, HONG Kang, ZHANG Li-chang, WANG Ru-yi, PAN Mu. Influence of ionomer on the durability of Pt/C catalyst[J]. Chinese Journal of Engineering, 2021, 43(8): 1073-1080. doi: 10.13374/j.issn2095-9389.2020.11.17.004

離子交換樹脂對Pt/C催化劑耐久性的影響

doi: 10.13374/j.issn2095-9389.2020.11.17.004
基金項目: 國家自然科學基金面上資助項目(22075218);先進能源科學與技術廣東省實驗室佛山分中心(佛山仙湖實驗室)開放基金資助項目
詳細信息
    通訊作者:

    E-mail:lishang@whut.edu.cn

  • 中圖分類號: TM 911.42

Influence of ionomer on the durability of Pt/C catalyst

More Information
  • 摘要: 離子交換樹脂(Ionomer)是質子交換膜燃料電池催化層的重要組成部分,它在催化層中的主要作用是作為質子傳導相傳導質子。本文采用旋轉圓盤電極法(RDE),在模擬燃料電池真實的運行環境(模式一)和模擬燃料電池啟停環境(模式二)兩種模式下,研究了Ionomer對鉑碳催化劑電壓循環耐久性的影響。通過相同位置透射電鏡分析法(IL-TEM),分析了鉑碳催化劑經歷模式二耐久性測試后的結構變化。研究發現Ionomer的存在可以提高鉑碳催化劑的耐久性。在模式一的測試中:添加Ionomer后,其氧還原半波電位下降值?E從23 mV下降至11 mV;沒有發生碳的腐蝕,Pt顆粒的長大是催化劑性能下降的主要原因;Ionomer的存在延緩了Pt電化學比表面積(ECSA)的降低從而有利于保持Pt的活性。在模式二的測試中:添加Ionomer后,其氧還原半波電位下降值?E從25 mV下降至5 mV,除了鉑顆粒長大外還發生了載體碳的腐蝕;Ionomer的存在同樣可以保持Pt的活性;IL-TEM分析可以看到明顯的鉑顆粒長大和碳腐蝕,碳載體的腐蝕造成鉑的嚴重流失和團聚。含Nafion的催化劑中鉑顆粒平均粒徑從2.7 nm增加到了3.76 nm,不含Nafion的催化劑中的鉑顆粒平均粒徑從2.44 nm增加到了4.19 nm。

     

  • 圖  1  模擬燃料電池真實的運行環境的加速模式圖(a)和模擬燃料電池啟停環境的加速模式圖(b)

    Figure  1.  Acceleration mode diagram that simulates the real operating environment of the fuel cell (a) and acceleration mode diagram that simulates the start-stop environment of the fuel cell (b)

    圖  2  金色TEM網格和PTFE(聚四氟乙烯)蓋固定在GC尖端上

    Figure  2.  Golden TEM grid and PTFE cap are fixed on the GC tip

    圖  3  樣品一(a)和樣品二(b)按模式一經歷0、3×103、6×103和104次循環后的CV曲線和ECSA的變化情況(c)

    Figure  3.  CV curves of sample 1 (a) and sample 2 (b) after 0, 3×103, 6×103和104 cycles in mode 1, and changes in ECSA (c)

    圖  4  樣品一(a)和樣品二(b)在0、3×103、6×103和104次循環后的LSV曲線

    Figure  4.  LSV curves of sample 1 (a) and sample 2 (b) after 0, 3×103, 6×103 and 104 cycles

    圖  5  樣品一(a)和樣品二(b)按模式二經歷0、3×103、9×103和2.7×104次循環后的CV曲線和ECSA的變化情況(c)

    Figure  5.  CV curves of sample 1 (a) and sample 2 (b) after 0, 3×103, 9×103, and 2.7×104 cycles in mode 2, and changes in ECSA (c)

    圖  6  樣品一(a)和樣品二(b)經歷0、3×103、9×103和2.7×104次循環后的LSV曲線

    Figure  6.  LSV curves of sample 1(a) and sample 2 (b) after 0, 3×103, 9×103, and 2.7×104 cycles

    圖  7  樣品一在耐久性測試前(a, c)和2.7×104次耐久性循環測試后(b, d)相同位置的TEM電鏡圖(a, b)和催化劑粒徑分布圖(c, d)

    Figure  7.  TEM electron microscope image of the same position of the catalyst (a, b) and catalyst particle size distribution diagram (c, d) in sample 1 before the durability test (a, c), and after the 2.7×104 durability cycle test (b, d)

    圖  8  樣品二在耐久性測試前(a, c)和2.7×104次耐久性循環測試后(b, d)相同位置的TEM電鏡圖(a, b)和催化劑粒徑分布圖(c, d)

    Figure  8.  TEM electron microscope image of the same position of the catalyst (a, b) and catalyst particle size distribution diagram (c, d) in sample 2 before the durability test (a, c), and after the 2.7×104 durability cycle test (b, d)

    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Cherevko S, Kulyk N, Mayrhofer K J J. Durability of platinum-based fuel cell electrocatalysts: Dissolution of bulk and nanoscale platinum. Nano Energy, 2016, 29: 275 doi: 10.1016/j.nanoen.2016.03.005
    [2] Sun S, Liu Z D, Diao P. Preparation and catalytic studies of pyrrole-doped carbon black oxide cathode materials for oxygen reduction reactions. Chin J Eng, 2019, 41(2): 216

    孫珊, 劉桎東, 刁鵬. 吡咯/炭黑氧化物復合氧陰極材料的制備及催化性能. 工程科學學報, 2019, 41(2):216
    [3] Souza N E, Bott-Neto J L, Rocha T A, et al. Support modification in Pt/C electrocatalysts for durability increase: A degradation study assisted by identical location transmission electron microscopy. Electrochimica Acta, 2018, 265: 523 doi: 10.1016/j.electacta.2018.01.180
    [4] Bandarenka A S, Ventosa E, Maljusch A, et al. Techniques and methodologies in modern electrocatalysis: Evaluation of activity, selectivity and stability of catalytic materials. Analyst, 2014, 139(6): 1274 doi: 10.1039/c3an01647a
    [5] Huang K, Zhu M T, Zhang F P, et al. Preparation of CoP/Co@NPC@rGO nanocomposites with an efficient bifunctiona electrocatalyst for hydrogen evolution and oxygen evolution reaction. Chin J Eng, 2020, 42(1): 91

    黃康, 朱梅婷, 張飛鵬, 等. 一種高效雙功能電催化劑CoP/Co@NPC@rGO的制備. 工程科學學報, 2020, 42(1):91
    [6] Arenz M, Zana A. Fuel cell catalyst degradation: Identical location electron microscopy and related methods. Nano Energy, 2016, 29: 299 doi: 10.1016/j.nanoen.2016.04.027
    [7] Meier J C, Galeano C, Katsounaros I, et al. Degradation mechanisms of Pt/C fuel cell catalysts under simulated start–stop conditions. ACS Catal, 2012, 2(5): 832 doi: 10.1021/cs300024h
    [8] Hartl K, Hanzlik M, Arenz M. IL-TEM investigations on the degradation mechanism of Pt/C electrocatalysts with different carbon supports. Energy Environ Sci, 2011, 4(1): 234 doi: 10.1039/C0EE00248H
    [9] Zana A, Speder J, Roefzaad M, et al. Probing degradation by IL-TEM: The influence of stress test conditions on the degradation mechanism. J Electrochem Soc, 2013, 160(6): F608 doi: 10.1149/2.078306jes
    [10] Speder J, Zana A, Spanos I, et al. Comparative degradation study of carbon supported proton exchange membrane fuel cell electrocatalysts - The influence of the platinum to carbon ratio on the degradation rate. J Power Sources, 2014, 261: 14 doi: 10.1016/j.jpowsour.2014.03.039
    [11] Hengge K, G?nsler T, Pizzutilo E, et al. Accelerated fuel cell tests of anodic Pt/Ru catalyst via identical location TEM: New aspects of degradation behavior. Int J Hydrog Energy, 2017, 42(40): 25359 doi: 10.1016/j.ijhydene.2017.08.108
    [12] Arán-Ais R M, Yu Y C, Hovden R, et al. Identical location transmission electron microscopy imaging of site-selective Pt nanocatalysts: Electrochemical activation and surface disordering. J Am Chem Soc, 2015, 137(47): 14992 doi: 10.1021/jacs.5b09553
    [13] Sakthivel M, Drillet J F. An extensive study about influence of the carbon support morphology on Pt activity and stability for oxygen reduction reaction. Appl Catal B:Environ, 2018, 231: 62 doi: 10.1016/j.apcatb.2018.02.050
    [14] Schonvogel D, Hülstede J, Wagner P, et al. Stability of Pt nanoparticles on alternative carbon supports for oxygen reduction reaction. J Electrochem Soc, 2017, 164(9): F995 doi: 10.1149/2.1611709jes
    [15] Gasteiger H A, Kocha S S, Sompalli B, et al. Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl Catal B:Environ, 2005, 56(1-2): 9 doi: 10.1016/j.apcatb.2004.06.021
    [16] Inaba M, Jensen A W, Sievers G W, et al. Benchmarking high surface area electrocatalysts in a gas diffusion electrode: Measurement of oxygen reduction activities under realistic conditions. Energy Environ Sci, 2018, 11(4): 988 doi: 10.1039/C8EE00019K
    [17] Nonoyama N, Okazaki S, Weber A Z, et al. Analysis of oxygen-transport diffusion resistance in proton-exchange-membrane fuel cells. J Electrochem Soc, 2011, 158(4): B416 doi: 10.1149/1.3546038
    [18] Kongkanand A, Mathias M F. The priority and challenge of high-power performance of low-platinum proton-exchange membrane fuel cells. J Phys Chem Lett, 2016, 7(7): 1127 doi: 10.1021/acs.jpclett.6b00216
    [19] Kocha S S, Zack J W, Alia S M, et al. Influence of ink composition on the electrochemical properties of Pt/C electrocatalysts. ECS Trans, 2013, 50(2): 1475 doi: 10.1149/05002.1475ecst
    [20] Ohma A, Fushinobu K, Okazaki K. Influence of Nafion? film on oxygen reduction reaction and hydrogen peroxide formation on Pt electrode for proton exchange membrane fuel cell. Electrochimica Acta, 2010, 55(28): 8829 doi: 10.1016/j.electacta.2010.08.005
    [21] Mayrhofer K J J, Ashton S J, Meier J C, et al. Non-destructive transmission electron microscopy study of catalyst degradation under electrochemical treatment. J Power Sources, 2008, 185(2): 734 doi: 10.1016/j.jpowsour.2008.08.003
    [22] Schl?gl K, Hanzlik M, Arenz M. Comparative IL-TEM study concerning the degradation of carbon supported Pt-based electrocatalysts. J Electrochem Soc, 2012, 159(6): B677 doi: 10.1149/2.035206jes
    [23] Yu Y C, Xin H L, Hovden R, et al. Three-dimensional tracking and visualization of hundreds of Pt?Co fuel cell nanocatalysts during electrochemical aging. Nano Lett, 2012, 12(9): 4417 doi: 10.1021/nl203920s
    [24] Nikkuni F R, Dubau L, Ticianelli E A, et al. Accelerated degradation of Pt3Co/C and Pt/C electrocatalysts studied by identical-location transmission electron microscopy in polymer electrolyte environment. Appl Catal B:Environ, 2015, 176-177: 486 doi: 10.1016/j.apcatb.2015.04.035
    [25] Vion-Dury B, Chatenet M, Guétaz L, et al. Determination of aging markers and their use as a tool to characterize Pt/C nanoparticles degradation mechanism in model PEMFC cathode environment. ECS Trans, 2019, 41(1): 697 doi: 10.1149/1.3635604
  • 加載中
圖(8)
計量
  • 文章訪問數:  1474
  • HTML全文瀏覽量:  553
  • PDF下載量:  59
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-11-17
  • 網絡出版日期:  2021-03-13
  • 刊出日期:  2021-08-25

目錄

    /

    返回文章
    返回