Tribological properties of the SLM-316L filament under the grease lubrication condition
-
摘要: 為研究金屬橡膠用選擇性激光熔融(SLM)技術制備的316L不銹鋼細絲在脂潤滑條件下的摩擦磨損性能,探討了不同載荷、不同摩擦速度以及載荷(F)和摩擦速度(v)共同作用的Fv因子對SLM-316L細絲摩擦系數和磨損率的影響規律,利用掃描電鏡觀察細絲磨損表面形貌,利用能譜儀(EDS)檢測磨損表面元素種類與原子分數,分析其磨損機制。結果表明:在脂潤滑條件下,摩擦系數隨著載荷的增大而減小,磨損率隨載荷的增大呈先降后升的趨勢。摩擦系數和磨損率均隨摩擦速度的增大呈先升后降趨勢。低載荷下SLM-316L細絲磨損機制主要為磨粒磨損和輕微的氧化磨損,較高載荷下氧化磨損加劇并伴隨疲勞磨損。低摩擦速度下SLM-316L細絲磨損機制主要為疲勞磨損和氧化磨損,較高摩擦速度下氧化磨損減弱,以磨粒磨損為主。摩擦系數隨Fv值的增大而減小,磨損率隨Fv值的增大呈先升后降再升的變化趨勢。因此用SLM-316L細絲制備的金屬橡膠在脂潤滑條件下最佳工作參數:Fv等于0.04 N?m?s?1,即載荷10 N、摩擦速度240 mm?min?1。Abstract: To study the friction and wear properties of 316L stainless steel filaments prepared by selective laser melting (SLM) for metal rubber under the condition of grease lubrication, the friction coefficient and wear rate of SLM-316L filaments under different loads, different friction velocities, and Fv factors of the combined effect with load (F) and friction velocity (v) were discussed. Scanning electron microscope (SEM) was used to observe the surface morphology of filaments after wear, and energy dispersive spectrometer (EDS) was used to detect the element types and atomic percentages of the worn surface. Based on these two methods, the wear mechanism was analyzed. Results show that under the grease lubrication condition and with increased load, the friction coefficient decreases, whereas the wear rate initially decreases and then increases. With increased friction velocity, both the friction coefficient and wear rate tend to initially increase and then decrease. The wear mechanism of SLM-316L filaments under the low load condition is mainly abrasive wear and slight oxidative wear. At a high load, oxidative wear is aggravated and accompanied by fatigue wear. The wear mechanism of SLM-316L filaments at low friction velocities is mainly fatigue wear and oxidative wear. At high friction velocities, oxidative wear weakens, and abrasive wear becomes dominant. With an increased Fv value, the friction coefficient decreases and wear rate tends to initially rise, which then decreases and finally rises again. Therefore, the best working parameter of the metal rubber prepared using SLM-316L filaments under grease lubrication conditions is Fv=0.04 N?m?s?1, which means that the load is equal to 10 N and the friction velocity is 240 mm?min?1.
-
表 1 SLM工藝參數
Table 1. Process parameters of selective laser melting (SLM)
Laser power/
WScanning
velocity/
(mm?s?1)Hatch space/
mmEnergy
density/
(J?mm?3)Form angle/
(°)100 700 0.080 90 30 表 2 不同試驗條件下Fv值
Table 2. Fv value under different conditions
Program Load, F/N Velocity, v/(mm?min?1) Fv/(N?m?s?1) 1# 5 240 0.02 2# 10 240 0.04 3# 15 240 0.06 4# 10 120 0.02 5# 10 180 0.03 6# 10 300 0.05 www.77susu.com -
參考文獻
[1] Lu C Z, Li J Y, Zhou B Y, et al. Effect of metallic wire materials characteristics on the fatigue properties of metal rubber. J Vib Shock, 2018, 37(24): 137盧成壯, 李靜媛, 周邦陽, 等. 金屬絲特性對金屬橡膠疲勞性能的影響. 振動與沖擊, 2018, 37(24):137 [2] Dong X P, Liu G Q, Niu L, et al. Fretting wear of stainless steel wires in metal rubber damping components. Tribology, 2008, 28(3): 248 doi: 10.3321/j.issn:1004-0595.2008.03.012董秀萍, 劉國權, 牛犁, 等. 金屬橡膠隔振構件中不銹鋼絲的微動摩擦磨損性能研究. 摩擦學學報, 2008, 28(3):248 doi: 10.3321/j.issn:1004-0595.2008.03.012 [3] Bai H B, Zhan Z Q, Ren Z Y. Progress and prospect of acoustic properties of metal rubber. J Vib Shock, 2020, 39(23): 242白鴻柏, 詹智強, 任志英. 金屬橡膠聲學性能研究進展與展望. 振動與沖擊, 2020, 39(23):242 [4] Liu B Q, Fang G, Lei L P. An analytical model for rapid predicting molten pool geometry of selective laser melting (SLM). Appl Math Model, 2021, 92: 505 doi: 10.1016/j.apm.2020.11.027 [5] Hsu T H, Huang P C, Lee M Y, et al. Effect of processing parameters on the fractions of martensite in 17-4 PH stainless steel fabricated by selective laser melting. J Alloys Compd, 2021, 859: 157758 doi: 10.1016/j.jallcom.2020.157758 [6] Zhou Y, Ning F D. Build orientation effect on geometric performance of curved-surface 316L stainless steel parts fabricated by selective laser melting. J Manuf Sci Eng, 2020, 142(12): 121002 doi: 10.1115/1.4047624 [7] Sander J, Hufenbach J, Giebeler L, et al. Microstructure, mechanical behavior, and wear properties of FeCrMoVC steel prepared by selective laser melting and casting. Scr Mater, 2017, 126: 41 doi: 10.1016/j.scriptamat.2016.07.029 [8] Zhu Y, Lin G L, Khonsari M M, et al. Material characterization and lubricating behaviors of porous stainless steel fabricated by selective laser melting. J Mater Process Technol, 2018, 262: 41 doi: 10.1016/j.jmatprotec.2018.06.027 [9] Huang W, Jiang L, Zhou C X, et al. The lubricant retaining effect of micro-dimples on the sliding surface of PDMS. Tribol Int, 2012, 52: 87 doi: 10.1016/j.triboint.2012.03.003 [10] Li C C, Yang X F, Wang S R, et al. Study on friction and lubrication characteristics of surface with unidirectional convergence texture. Coatings, 2019, 9(12): 780 doi: 10.3390/coatings9120780 [11] Huang M J, Yang Y C, Feng S C. Effect of 316L SLM forming process on sliding wear characteristics and hardness. Surf Technol, 2020, 49(1): 221黃明吉, 楊穎超, 馮少川. SLM成形316L工藝對滑動磨損特性及硬度的影響. 表面技術, 2020, 49(1):221 [12] Zhang B C, Coddet C. Selective laser melting of iron powder: Observation of melting mechanism and densification behavior via point-track-surface-part research. J Manuf Sci Eng, 2016, 138(5): 051001 doi: 10.1115/1.4031366 [13] Huang M J, Zhang Z X, Chen P. Effect of selective laser melting process parameters on microstructure and mechanical properties of 316L stainless steel helical micro-diameter spring. Int J Adv Manuf Technol, 2019, 104(5-8): 2117 doi: 10.1007/s00170-019-03928-3 [14] Grützmacher P G, Rammacher S, Rathmann D, et al. Interplay between microstructural evolution and tribo-chemistry during dry sliding of metals. Friction, 2019, 7(6): 637 doi: 10.1007/s40544-019-0259-5 [15] Wan Y, Li J L, Xiong D S. Influence of sliding velocity on lubrication state of surface texturing. J Central South Univ Sci Tech, 2015, 46(12): 4442 doi: 10.11817/j.issn.1672-7207.2015.12.008萬軼, 李建亮, 熊黨生. 滑動速度對織構化表面潤滑狀態的影響. 中南大學學報(自然科學版), 2015, 46(12):4442 doi: 10.11817/j.issn.1672-7207.2015.12.008 [16] Ren H Y, Xie G L, Liu X H. Effect of the solid-state transition of Fe–C phase on the friction and wear behavior and Mechanism of Cu–(Fe–C) alloys. Chin J Eng, 2020, 42(9): 1190任浩巖, 解國良, 劉新華. Cu–(Fe–C)合金中Fe–C相的固態轉變對其摩擦磨損行為及機理的影響. 工程科學學報, 2020, 42(9):1190 [17] Yan X C, Gao S H, Chang C, et al. Microstructure and tribological property of selective laser melted Fe?Mn?Al?C alloy. Mater Lett, 2020, 270: 127699 doi: 10.1016/j.matlet.2020.127699 [18] Sun Y, Bailey R, Moroz A. Surface finish and properties enhancement of selective laser melted 316L stainless steel by surface mechanical attrition treatment. Surf Coat Technol, 2019, 378: 124993 doi: 10.1016/j.surfcoat.2019.124993 [19] Ren X Y, Zhang G W, Xu H, et al. Wear resistance of ZCuPb20Sn5 alloy. Tribology, 2020, 40(4): 467任曉燕, 張國偉, 徐宏, 等. ZCuPb20Sn5合金耐磨性能研究. 摩擦學學報, 2020, 40(4):467 [20] Li H, Ramezani M, Li M, et al. Tribological performance of selective laser melted 316L stainless steel. Tribol Int, 2018, 128: 121 doi: 10.1016/j.triboint.2018.07.021 [21] Lin L Y, Ecke N, Kamerling S, et al. Study on the impact of graphene and cellulose nanocrystal on the friction and wear properties of SBR/NR composites under dry sliding conditions. Wear, 2018, 414-415: 43 doi: 10.1016/j.wear.2018.07.027 [22] Lates M T, Velicu R, Gavrila C C. Temperature, pressure, and velocity influence on the tribological properties of PA66 and PA46 polyamides. Materials, 2019, 12(20): 3452 doi: 10.3390/ma12203452 [23] Li H, Ramezani M, Li M, et al. Effect of process parameters on tribological performance of 316L stainless steel parts fabricated by selective laser melting. Manuf Lett, 2018, 16: 36 doi: 10.1016/j.mfglet.2018.04.003 [24] Chen X B, Ge X, Zhu Y, et al. A study on microstructure and tribology performance of samples processed by selective laser melting (SLM). J Mech Eng, 2018, 54(3): 63 doi: 10.3901/JME.2018.03.063陳旭斌, 葛翔, 祝毅, 等. 選擇性激光熔化零件微觀結構及摩擦學性能研究. 機械工程學報, 2018, 54(3):63 doi: 10.3901/JME.2018.03.063 [25] Liu Y S, Zhai X M, Deng Y P, et al. Tribological property of selective laser melting-processed 316L stainless steel against filled PEEK under water lubrication. Tribol Trans, 2019, 62(6): 962 doi: 10.1080/10402004.2019.1635671 [26] Zhu Y, Zou J, Chen X, et al. Tribology of selective laser melting processed parts: Stainless steel 316 L under lubricated conditions. Wear, 2016, 350-351: 46 doi: 10.1016/j.wear.2016.01.004 [27] Yang Y, Zhu Y, Khonsari M M, et al. Wear anisotropy of selective laser melted 316L stainless steel. Wear, 2019, 428-429: 376 doi: 10.1016/j.wear.2019.04.001 -