<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

SLM-316L細絲脂潤滑摩擦磨損性能

黃明吉 韓建磊 董秀萍

黃明吉, 韓建磊, 董秀萍. SLM-316L細絲脂潤滑摩擦磨損性能[J]. 工程科學學報, 2021, 43(6): 835-842. doi: 10.13374/j.issn2095-9389.2020.11.12.005
引用本文: 黃明吉, 韓建磊, 董秀萍. SLM-316L細絲脂潤滑摩擦磨損性能[J]. 工程科學學報, 2021, 43(6): 835-842. doi: 10.13374/j.issn2095-9389.2020.11.12.005
HUANG Ming-ji, HAN Jian-lei, DONG Xiu-ping. Tribological properties of the SLM-316L filament under the grease lubrication condition[J]. Chinese Journal of Engineering, 2021, 43(6): 835-842. doi: 10.13374/j.issn2095-9389.2020.11.12.005
Citation: HUANG Ming-ji, HAN Jian-lei, DONG Xiu-ping. Tribological properties of the SLM-316L filament under the grease lubrication condition[J]. Chinese Journal of Engineering, 2021, 43(6): 835-842. doi: 10.13374/j.issn2095-9389.2020.11.12.005

SLM-316L細絲脂潤滑摩擦磨損性能

doi: 10.13374/j.issn2095-9389.2020.11.12.005
基金項目: 國家自然科學基金資助項目(51975042);北京科技大學順德研究生院科技創新專項資金資助項目(BK19AE007)
詳細信息
    通訊作者:

    E-mail:huangmingji@ustb.edu.cn

  • 中圖分類號: TH117.1

Tribological properties of the SLM-316L filament under the grease lubrication condition

More Information
  • 摘要: 為研究金屬橡膠用選擇性激光熔融(SLM)技術制備的316L不銹鋼細絲在脂潤滑條件下的摩擦磨損性能,探討了不同載荷、不同摩擦速度以及載荷(F)和摩擦速度(v)共同作用的Fv因子對SLM-316L細絲摩擦系數和磨損率的影響規律,利用掃描電鏡觀察細絲磨損表面形貌,利用能譜儀(EDS)檢測磨損表面元素種類與原子分數,分析其磨損機制。結果表明:在脂潤滑條件下,摩擦系數隨著載荷的增大而減小,磨損率隨載荷的增大呈先降后升的趨勢。摩擦系數和磨損率均隨摩擦速度的增大呈先升后降趨勢。低載荷下SLM-316L細絲磨損機制主要為磨粒磨損和輕微的氧化磨損,較高載荷下氧化磨損加劇并伴隨疲勞磨損。低摩擦速度下SLM-316L細絲磨損機制主要為疲勞磨損和氧化磨損,較高摩擦速度下氧化磨損減弱,以磨粒磨損為主。摩擦系數隨Fv值的增大而減小,磨損率隨Fv值的增大呈先升后降再升的變化趨勢。因此用SLM-316L細絲制備的金屬橡膠在脂潤滑條件下最佳工作參數:Fv等于0.04 N?m?s?1,即載荷10 N、摩擦速度240 mm?min?1

     

  • 圖  1  摩擦磨損試驗機及接觸示意圖

    Figure  1.  Friction and wear testing machine and schematic of contact

    圖  2  未摩擦細絲能譜數據圖

    Figure  2.  EDS energy spectrum data graph of an un-rubbed filament

    圖  3  不同載荷下的摩擦參數圖。(a)摩擦系數;(b)磨損深度;(c)摩擦系數的穩定值和磨損率

    Figure  3.  Friction parameters for different loads: (a) frictional coefficient; (b) wear depth; (c) stable value of the friction coefficient and wear rate

    圖  4  不同載荷下磨損表面的掃描電鏡圖及能譜圖。(a)5 N;(b)10 N;(c)15 N

    Figure  4.  SEM and EDS spectra of the wear surface under different loads: (a) 5 N; (b) 10 N; (c) 15 N

    圖  5  不同速度下的摩擦參數圖。(a)摩擦系數;(b)磨損深度

    Figure  5.  Friction parameters for different velocities: (a) friction coefficient; (b) wear depth

    圖  6  不同速度下摩擦系數穩定值和磨損率柱狀圖

    Figure  6.  Histogram of the stable value of the friction coefficient and wear rate at different velocities

    圖  7  不同速度下的磨損表面的掃描電鏡圖及能譜圖。(a)120 mm?min?1;(b)180 mm?min?1;(c)240 mm?min?1;(d)300 mm?min?1

    Figure  7.  SEM and EDS spectra of the wear surface under different velocities: (a) 120 mm?min?1; (b) 180 mm?min?1; (c) 240 mm?min?1; (d) 300 mm?min?1

    圖  8  不同Fv下摩擦系數穩定值和磨損率變化趨勢圖

    Figure  8.  Stable value of the friction coefficient and wear rate at different Fv values

    表  1  SLM工藝參數

    Table  1.   Process parameters of selective laser melting (SLM)

    Laser power/
    W
    Scanning
    velocity/
    (mm?s?1)
    Hatch space/
    mm
    Energy
    density/
    (J?mm?3)
    Form angle/
    (°)
    1007000.0809030
    下載: 導出CSV

    表  2  不同試驗條件下Fv

    Table  2.   Fv value under different conditions

    ProgramLoad, F/NVelocity, v/(mm?min?1)Fv/(N?m?s?1)
    1#52400.02
    2#102400.04
    3#152400.06
    4#101200.02
    5#101800.03
    6#103000.05
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Lu C Z, Li J Y, Zhou B Y, et al. Effect of metallic wire materials characteristics on the fatigue properties of metal rubber. J Vib Shock, 2018, 37(24): 137

    盧成壯, 李靜媛, 周邦陽, 等. 金屬絲特性對金屬橡膠疲勞性能的影響. 振動與沖擊, 2018, 37(24):137
    [2] Dong X P, Liu G Q, Niu L, et al. Fretting wear of stainless steel wires in metal rubber damping components. Tribology, 2008, 28(3): 248 doi: 10.3321/j.issn:1004-0595.2008.03.012

    董秀萍, 劉國權, 牛犁, 等. 金屬橡膠隔振構件中不銹鋼絲的微動摩擦磨損性能研究. 摩擦學學報, 2008, 28(3):248 doi: 10.3321/j.issn:1004-0595.2008.03.012
    [3] Bai H B, Zhan Z Q, Ren Z Y. Progress and prospect of acoustic properties of metal rubber. J Vib Shock, 2020, 39(23): 242

    白鴻柏, 詹智強, 任志英. 金屬橡膠聲學性能研究進展與展望. 振動與沖擊, 2020, 39(23):242
    [4] Liu B Q, Fang G, Lei L P. An analytical model for rapid predicting molten pool geometry of selective laser melting (SLM). Appl Math Model, 2021, 92: 505 doi: 10.1016/j.apm.2020.11.027
    [5] Hsu T H, Huang P C, Lee M Y, et al. Effect of processing parameters on the fractions of martensite in 17-4 PH stainless steel fabricated by selective laser melting. J Alloys Compd, 2021, 859: 157758 doi: 10.1016/j.jallcom.2020.157758
    [6] Zhou Y, Ning F D. Build orientation effect on geometric performance of curved-surface 316L stainless steel parts fabricated by selective laser melting. J Manuf Sci Eng, 2020, 142(12): 121002 doi: 10.1115/1.4047624
    [7] Sander J, Hufenbach J, Giebeler L, et al. Microstructure, mechanical behavior, and wear properties of FeCrMoVC steel prepared by selective laser melting and casting. Scr Mater, 2017, 126: 41 doi: 10.1016/j.scriptamat.2016.07.029
    [8] Zhu Y, Lin G L, Khonsari M M, et al. Material characterization and lubricating behaviors of porous stainless steel fabricated by selective laser melting. J Mater Process Technol, 2018, 262: 41 doi: 10.1016/j.jmatprotec.2018.06.027
    [9] Huang W, Jiang L, Zhou C X, et al. The lubricant retaining effect of micro-dimples on the sliding surface of PDMS. Tribol Int, 2012, 52: 87 doi: 10.1016/j.triboint.2012.03.003
    [10] Li C C, Yang X F, Wang S R, et al. Study on friction and lubrication characteristics of surface with unidirectional convergence texture. Coatings, 2019, 9(12): 780 doi: 10.3390/coatings9120780
    [11] Huang M J, Yang Y C, Feng S C. Effect of 316L SLM forming process on sliding wear characteristics and hardness. Surf Technol, 2020, 49(1): 221

    黃明吉, 楊穎超, 馮少川. SLM成形316L工藝對滑動磨損特性及硬度的影響. 表面技術, 2020, 49(1):221
    [12] Zhang B C, Coddet C. Selective laser melting of iron powder: Observation of melting mechanism and densification behavior via point-track-surface-part research. J Manuf Sci Eng, 2016, 138(5): 051001 doi: 10.1115/1.4031366
    [13] Huang M J, Zhang Z X, Chen P. Effect of selective laser melting process parameters on microstructure and mechanical properties of 316L stainless steel helical micro-diameter spring. Int J Adv Manuf Technol, 2019, 104(5-8): 2117 doi: 10.1007/s00170-019-03928-3
    [14] Grützmacher P G, Rammacher S, Rathmann D, et al. Interplay between microstructural evolution and tribo-chemistry during dry sliding of metals. Friction, 2019, 7(6): 637 doi: 10.1007/s40544-019-0259-5
    [15] Wan Y, Li J L, Xiong D S. Influence of sliding velocity on lubrication state of surface texturing. J Central South Univ Sci Tech, 2015, 46(12): 4442 doi: 10.11817/j.issn.1672-7207.2015.12.008

    萬軼, 李建亮, 熊黨生. 滑動速度對織構化表面潤滑狀態的影響. 中南大學學報(自然科學版), 2015, 46(12):4442 doi: 10.11817/j.issn.1672-7207.2015.12.008
    [16] Ren H Y, Xie G L, Liu X H. Effect of the solid-state transition of Fe–C phase on the friction and wear behavior and Mechanism of Cu–(Fe–C) alloys. Chin J Eng, 2020, 42(9): 1190

    任浩巖, 解國良, 劉新華. Cu–(Fe–C)合金中Fe–C相的固態轉變對其摩擦磨損行為及機理的影響. 工程科學學報, 2020, 42(9):1190
    [17] Yan X C, Gao S H, Chang C, et al. Microstructure and tribological property of selective laser melted Fe?Mn?Al?C alloy. Mater Lett, 2020, 270: 127699 doi: 10.1016/j.matlet.2020.127699
    [18] Sun Y, Bailey R, Moroz A. Surface finish and properties enhancement of selective laser melted 316L stainless steel by surface mechanical attrition treatment. Surf Coat Technol, 2019, 378: 124993 doi: 10.1016/j.surfcoat.2019.124993
    [19] Ren X Y, Zhang G W, Xu H, et al. Wear resistance of ZCuPb20Sn5 alloy. Tribology, 2020, 40(4): 467

    任曉燕, 張國偉, 徐宏, 等. ZCuPb20Sn5合金耐磨性能研究. 摩擦學學報, 2020, 40(4):467
    [20] Li H, Ramezani M, Li M, et al. Tribological performance of selective laser melted 316L stainless steel. Tribol Int, 2018, 128: 121 doi: 10.1016/j.triboint.2018.07.021
    [21] Lin L Y, Ecke N, Kamerling S, et al. Study on the impact of graphene and cellulose nanocrystal on the friction and wear properties of SBR/NR composites under dry sliding conditions. Wear, 2018, 414-415: 43 doi: 10.1016/j.wear.2018.07.027
    [22] Lates M T, Velicu R, Gavrila C C. Temperature, pressure, and velocity influence on the tribological properties of PA66 and PA46 polyamides. Materials, 2019, 12(20): 3452 doi: 10.3390/ma12203452
    [23] Li H, Ramezani M, Li M, et al. Effect of process parameters on tribological performance of 316L stainless steel parts fabricated by selective laser melting. Manuf Lett, 2018, 16: 36 doi: 10.1016/j.mfglet.2018.04.003
    [24] Chen X B, Ge X, Zhu Y, et al. A study on microstructure and tribology performance of samples processed by selective laser melting (SLM). J Mech Eng, 2018, 54(3): 63 doi: 10.3901/JME.2018.03.063

    陳旭斌, 葛翔, 祝毅, 等. 選擇性激光熔化零件微觀結構及摩擦學性能研究. 機械工程學報, 2018, 54(3):63 doi: 10.3901/JME.2018.03.063
    [25] Liu Y S, Zhai X M, Deng Y P, et al. Tribological property of selective laser melting-processed 316L stainless steel against filled PEEK under water lubrication. Tribol Trans, 2019, 62(6): 962 doi: 10.1080/10402004.2019.1635671
    [26] Zhu Y, Zou J, Chen X, et al. Tribology of selective laser melting processed parts: Stainless steel 316 L under lubricated conditions. Wear, 2016, 350-351: 46 doi: 10.1016/j.wear.2016.01.004
    [27] Yang Y, Zhu Y, Khonsari M M, et al. Wear anisotropy of selective laser melted 316L stainless steel. Wear, 2019, 428-429: 376 doi: 10.1016/j.wear.2019.04.001
  • 加載中
圖(8) / 表(2)
計量
  • 文章訪問數:  738
  • HTML全文瀏覽量:  356
  • PDF下載量:  32
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-11-12
  • 刊出日期:  2021-06-25

目錄

    /

    返回文章
    返回