<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

基于磁記憶檢測的橋鋼箱梁翼緣損傷狀態力磁關系

蘇三慶 秦彥龍 王威 左付亮 鄧瑞澤 劉馨為

蘇三慶, 秦彥龍, 王威, 左付亮, 鄧瑞澤, 劉馨為. 基于磁記憶檢測的橋鋼箱梁翼緣損傷狀態力磁關系[J]. 工程科學學報, 2022, 44(5): 900-910. doi: 10.13374/j.issn2095-9389.2020.11.10.00214
引用本文: 蘇三慶, 秦彥龍, 王威, 左付亮, 鄧瑞澤, 劉馨為. 基于磁記憶檢測的橋鋼箱梁翼緣損傷狀態力磁關系[J]. 工程科學學報, 2022, 44(5): 900-910. doi: 10.13374/j.issn2095-9389.2020.11.10.00214
SU San-qing, QIN Yan-long, WANG Wei, ZUO Fu-liang, DENG Rui-ze, LIU Xin-wei. Stress?magnetization of the state of flange damage to a bridge steel box beam based on magnetic memory detection[J]. Chinese Journal of Engineering, 2022, 44(5): 900-910. doi: 10.13374/j.issn2095-9389.2020.11.10.00214
Citation: SU San-qing, QIN Yan-long, WANG Wei, ZUO Fu-liang, DENG Rui-ze, LIU Xin-wei. Stress?magnetization of the state of flange damage to a bridge steel box beam based on magnetic memory detection[J]. Chinese Journal of Engineering, 2022, 44(5): 900-910. doi: 10.13374/j.issn2095-9389.2020.11.10.00214

基于磁記憶檢測的橋鋼箱梁翼緣損傷狀態力磁關系

doi: 10.13374/j.issn2095-9389.2020.11.10.00214
基金項目: 國家自然科學基金資助項目(51878548);陜西省自然科學基礎研究計劃資助項目(2018JZ5013)
詳細信息
    通訊作者:

    E-mail: sussqx@xauat.edu.cn

  • 中圖分類號: TG115.28;TU391

Stress?magnetization of the state of flange damage to a bridge steel box beam based on magnetic memory detection

More Information
  • 摘要: 金屬磁記憶檢測技術由于其能夠快速便捷的對鐵磁性構件的損傷進行識別,且被認為具有識別隱性損傷的能力,而被廣泛研究。為推進金屬磁記憶檢測技術在橋鋼箱梁損傷檢測方面的應用,對橋鋼箱梁進行了靜力受彎試驗,提取其變形最嚴重的上翼緣磁信號分布,建立了損傷區域力與磁信號和磁信號梯度的關系曲線,并提出用磁場梯度指數來表征鋼梁的受力和損傷狀態。結果表明:上翼緣磁信號曲線與應力變化形態正好相反,磁信號曲線在進入塑性后發生反轉變為負值,且隨應力變化的速度增快,可以判斷構件進入塑性狀態,即將發生損傷;磁場梯度曲線在損傷最嚴重的區域出現最大值,且隨著荷載的增大,磁梯度最大值點不斷向鋼梁中間移動,由此可以進行破壞狀態的預警;磁場梯度與應力關系曲線可將構件整個受力過程明顯的區分為初始、屈服、塑性、損傷4個狀態;可以用磁場梯度指數來進行構件受力狀態與損傷狀態的表征。該研究可為金屬磁記憶檢測技術在橋鋼箱梁損傷狀態的定量評估和預警方面的應用提供依據和參考。

     

  • 圖  1  試件三維圖(單位:mm)

    Figure  1.  Three-dimensional model of specimen (unit: mm)

    圖  2  試件橫截面圖(單位:mm)

    Figure  2.  Cross section of specimen (unit: mm)

    圖  3  試件加載示意圖(單位:mm)

    Figure  3.  Specimen loading mode (unit: mm)

    圖  4  上翼緣檢測線布置示意圖 (單位:mm)

    Figure  4.  Upper flange detection line layout (unit: mm)

    圖  5  試件本構模型曲線

    Figure  5.  Constitutive model curve of the specimen

    圖  6  試件最終破壞形態

    Figure  6.  Final failure pattern of the specimen

    圖  7  1800 mm鋼梁荷載位移曲線

    Figure  7.  Load displacement curve of the 1800 mm steel beam

    圖  8  鋼梁上翼緣初始磁信號變化曲線。(a)1800 mm鋼梁;(b)1500 mm鋼梁

    Figure  8.  Curves of the initial magnetic signal of the upper flange of a steel beams: (a) 1800 mm steel beam; (b) 1500 mm steel beam

    圖  9  1800 mm鋼梁上翼緣加載中磁信號變化曲線。(a)彈性階段;(b)塑性階段

    Figure  9.  Magnetic signal change curves during flange loading of the 1800 mm steel beam: (a) elastic stage; (b) plastic stage

    圖  10  1500 mm鋼梁上翼緣加載中磁信號變化曲線。(a)彈性階段;(b)塑性階段

    Figure  10.  Magnetic signal change curve during flange loading of the 1500 mm steel beam: (a) elastic stage; (b) plastic stage

    圖  11  1800 mm鋼梁上翼緣磁信號梯度變化曲線。(a)彈性階段;(b)塑性階段

    Figure  11.  Magnetic signal gradient curves of the upper flange of the 1800 mm steel beam: (a) elastic stage; (b) plastic stage

    圖  12  1500 mm鋼梁上翼緣磁信號梯度變化曲線。(a)彈性階段;(b)塑性階段

    Figure  12.  Magnetic signal gradient curves of the upper flange of the 1500 mm steel beam: (a) elastic stage; (b) plastic stage

    圖  13  有限元計算模型

    Figure  13.  Finite element model

    圖  14  有限元計算和試驗的荷載位移曲線

    Figure  14.  Finite element calculation and test load displacement curves

    圖  15  極限狀態鋼梁應力云圖。(a)正應力云圖;(b)切應力云圖

    Figure  15.  Stress nephogram of a steel beam in the ultimate state: (a) nephogram of normal stress; (b) nephogram of shear stress

    圖  16  試件極限狀態等效應力云圖

    Figure  16.  Equivalent stress nephogram of specimen ultimate state

    圖  17  有限元計算的1800 mm梁上翼緣應力分布

    Figure  17.  Stress distribution on the upper flange of the 1800 mm beam calculated using the finite element method

    圖  18  鋼梁純彎段力磁分布曲線。(a)1800 mm鋼梁;(b)1500 mm鋼梁

    Figure  18.  Magnetic distribution curve of force in the pure bending section of a steel beam: (a) 1800 mm steel beam; (b) 1500 mm steel beam

    圖  19  鋼梁純彎段應力與磁信號關系曲線。(a)1800 mm鋼梁;(b)1500 mm鋼梁

    Figure  19.  Relationship curves of the stress and magnetic signal in the pure bending section of a steel beam: (a) 1800 mm steel beam; (b) 1500 mm steel beam

    圖  20  鋼梁翼緣力與磁信號梯度峰值曲線。(a)1800 mm鋼梁;(b)1500 mm鋼梁

    Figure  20.  Peak gradient curves of the steel beam flange force and magnetic signal: (a) 1800 mm steel beam; (b) 1500 mm steel beam

    圖  21  力與磁場梯度指數關系曲線。(a)1800 mm鋼梁;(b)1500 mm鋼梁

    Figure  21.  Exponential relationship curves between the force and magnetic field gradient: (a) 1800 mm steel beam; (b) 1500 mm steel beam

    表  1  Q345qC 鋼材化學成分(質量分數)

    Table  1.   Q345qC steel chemical composition %

    CSiMnSP
    0.150.381.6$ \leqslant $0.035$ \leqslant $0.035
    下載: 導出CSV

    表  2  Q345qC鋼材的力學參數

    Table  2.   Mechanical parameters of Q345qC steel

    Elasticity modulus/GPaYield strength/
    MPa
    Strength of extension/MPaElongation/
    %
    201$ \geqslant $345510$ \geqslant $21
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Chen J B. Research on Mechanical Performance of Steel Box Girder of a Viaduct Reconstruction Project [Dissertation]. Changsha: Central South University, 2009

    陳建波. 某高架橋改造工程鋼箱梁力學性能研究[學位論文]. 長沙: 中南大學, 2009
    [2] Yao N. Research on Relative Methods of Damage Inspecting and Safety Appraisal of Bridge Steel Structures in Service [Dissertation]. Beijing: Tsinghua University, 2009

    姚南. 在役橋梁鋼結構損傷檢測與安全評估相關方法的研究[學位論文]. 北京: 清華大學, 2009
    [3] Xu B S, Dong L H. Metal Magnetic Memory Testing Method in Remanufacturing Quality Control. Beijing: National Defense Industry Press, 2015

    徐濱士, 董麗虹. 再制造質量控制中的金屬磁記憶檢測技術. 北京: 國防工業出版社, 2015
    [4] Shi P P. Quantitative Study of Micro-Magnetic Nondestructive Testing for Stress and Defect in Ferromagnetic Materials [Dissertation]. Xi'an: Xidian University, 2017

    時朋朋. 鐵磁材料應力和缺陷的微磁檢測定量化研究[學位論文]. 西安: 西安電子科技大學, 2017
    [5] Bulte D P, Langman R A. Origins of the magnetomechanical effect. J Magn Magn Mater, 2002, 251(2): 229 doi: 10.1016/S0304-8853(02)00588-7
    [6] Dubov A A. A study of metal properties using the method of magnetic memory. Met Sci Heat Treat, 1997, 39(9): 401 doi: 10.1007/BF02469065
    [7] Xing H Y, Xu M Q, Li J W. Magnetic Memory Testing Technology and Engineering Application. Beijing: China Petrochemical Press, 2011

    邢海燕, 徐敏強, 李建偉. 磁記憶檢測技術及工程應用. 北京: 中國石化出版社, 2011
    [8] Su S Q, Liu X W, Wang W, et al. Progress and key problems in the research on metal magnetic memory testing technology. Chin J Eng, 2020, 42(12): 1557

    蘇三慶, 劉馨為, 王威, 等. 金屬磁記憶檢測技術研究新進展與關鍵問題. 工程科學學報, 2020, 42(12):1557
    [9] Shi P P, Su S Q, Chen Z M. Overview of researches on the nondestructive testing method of metal magnetic memory: Status and challenges. J Nondestruct Eval, 2020, 39(2): 1
    [10] Qian Z C, Huang H H, Han G, et al. Review on metal magnetic memory detection technology in remanufacturing and case study in engineering. J Mech Eng, 2018, 54(17): 235 doi: 10.3901/JME.2018.17.235

    錢正春, 黃海鴻, 韓剛, 等. 面向再制造的金屬磁記憶檢測技術研究綜述及工程應用案例. 機械工程學報, 2018, 54(17):235 doi: 10.3901/JME.2018.17.235
    [11] Su S Q, Ma X P, Wang W, et al. Stress-dependent magnetic charge model for micro-defects of steel wire based on the magnetic memory method. Res Nondestruct Eval, 2020, 31(1): 24 doi: 10.1080/09349847.2019.1617914
    [12] Ma X P, Su S Q, Wang W, et al. Damage location and numerical simulation for steel wire under torsion based on magnetic memory method. Int J Appl Electromagn Mech, 2019, 60(2): 223 doi: 10.3233/JAE-180075
    [13] Su S Q, Wang W. Non-destructive Testing of Building Steel Structure with Magnetic Memory. Beijing: Science Press, 2019

    蘇三慶, 王威. 建筑鋼結構磁記憶無損檢測. 北京: 科學出版社, 2019
    [14] Yi S C, Wang W, Su S Q. Bending experimental study on metal magnetic memory signal based on von Mises yield criterion. Int J Appl Electromagn Mech, 2015, 49(4): 547 doi: 10.3233/JAE-150067
    [15] Su S Q, Qin Y L, Wang W, et al. Numerical simulation of stress-magnetization effect for bending states of Q235b steel beam based on magnetic memory. Mater Sci Technol, 2020, 28(5): 11

    蘇三慶, 秦彥龍, 王威, 等. 基于磁記憶的Q235b受彎鋼梁力磁效應數值模擬. 材料科學與工藝, 2020, 28(5):11
    [16] Yao K. Experimental Research on Testing and Evaluation of Early Damage of Ferromagnetic Materials Based on Metal Magnetic Memory Method [Dissertation]. Beijing: Beijing Jiaotong University, 2014

    姚凱. 基于金屬磁記憶法的鐵磁材料早期損傷檢測與評價的實驗研究[學位論文]. 北京: 北京交通大學, 2014
    [17] Ren J L, Lin J M. Metal Magnetic Memory Detection Technology. Beijing: China Electric Power Press, 2000

    任吉林, 林俊明. 金屬磁記憶檢測技術. 北京: 中國電力出版社, 2000
    [18] Yao K, Wang Z D, Deng B, et al. Experimental research on metal magnetic memory method. Exp Mech, 2012, 52(3): 305 doi: 10.1007/s11340-011-9490-3
    [19] Ren J L, Lin J M. Electromagnetic Nondestructive Testing. Beijing: Science Press, 2008

    任吉林, 林俊明. 電磁無損檢測. 北京: 科學出版社, 2008
    [20] Jiles D. Introduction to Magnetism and Magnetic Materials. 3rd ed. London: Chapman and Hall Press, 2016
    [21] Jiles D C. Theory of the magnetomechanical effect. J Phys D Appl Phys, 1995, 28(8): 1537 doi: 10.1088/0022-3727/28/8/001
    [22] Yi S C, Wang W, Su S Q, et al. Using the characteristic parameters of magnetic memory signal to evaluate the tensile stress state. J Vib Meas Diagn, 2017, 37(4): 667

    易術春, 王威, 蘇三慶, 等. 利用磁記憶信號特征參數表征拉伸應力狀態. 振動 測試與診斷, 2017, 37(4):667
    [23] Jiles D C, Devine M K. Recent developments in modeling of the stress derivative of magnetization in ferromagnetic materials. J Appl Phys, 1994, 76(10): 7015 doi: 10.1063/1.358072
    [24] Sablik M J, Jiles D C. Coupled magnetoelastic theory of magnetic and magnetostrictive hysteresis. IEEE Trans Magn, 1993, 29(4): 2113 doi: 10.1109/20.221036
    [25] Yang E, Li L M, Chen X. Magnetic field aberration induced by cycle stress. J Magn Magn Mater, 2007, 312(1): 72 doi: 10.1016/j.jmmm.2006.09.019
    [26] Cullity B D, Graham C D. Introduction to Magnetic Materials. 2nd Ed. Hoboken: John Wiley Press, 2008
  • 加載中
圖(21) / 表(2)
計量
  • 文章訪問數:  343
  • HTML全文瀏覽量:  266
  • PDF下載量:  20
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-11-10
  • 網絡出版日期:  2021-11-23
  • 刊出日期:  2022-05-25

目錄

    /

    返回文章
    返回