Stress?magnetization of the state of flange damage to a bridge steel box beam based on magnetic memory detection
-
摘要: 金屬磁記憶檢測技術由于其能夠快速便捷的對鐵磁性構件的損傷進行識別,且被認為具有識別隱性損傷的能力,而被廣泛研究。為推進金屬磁記憶檢測技術在橋鋼箱梁損傷檢測方面的應用,對橋鋼箱梁進行了靜力受彎試驗,提取其變形最嚴重的上翼緣磁信號分布,建立了損傷區域力與磁信號和磁信號梯度的關系曲線,并提出用磁場梯度指數來表征鋼梁的受力和損傷狀態。結果表明:上翼緣磁信號曲線與應力變化形態正好相反,磁信號曲線在進入塑性后發生反轉變為負值,且隨應力變化的速度增快,可以判斷構件進入塑性狀態,即將發生損傷;磁場梯度曲線在損傷最嚴重的區域出現最大值,且隨著荷載的增大,磁梯度最大值點不斷向鋼梁中間移動,由此可以進行破壞狀態的預警;磁場梯度與應力關系曲線可將構件整個受力過程明顯的區分為初始、屈服、塑性、損傷4個狀態;可以用磁場梯度指數來進行構件受力狀態與損傷狀態的表征。該研究可為金屬磁記憶檢測技術在橋鋼箱梁損傷狀態的定量評估和預警方面的應用提供依據和參考。Abstract: Metal magnetic memory detection technology has been widely studied because it can identify damage to ferromagnetic components quickly and conveniently, and it is considered to have the ability to identify hidden damage. To promote the application of metal magnetic memory technology in the damage detection of a bridge steel box beam, a static bending test on the steel box beam of the bridge was performed, and the magnetic signal distribution of the upper flange with the most severe deformation was extracted. The quantitative relationship between the stress in the damaged region and magnetic signal or magnetic signal gradient was established, and an approach for characterizing the stress and damage state of the steel beam was proposed using the magnetic field gradient index. The results show that the magnetic signal curve of the upper flange is opposite to that of the stress change form, and the magnetic signal curve reverses to a negative value after entering the plastic state and increases with the stress change speed, so the component can be judged to enter the plastic state and soon be damaged. The maximum value of the magnetic field gradient curve appears in the position with the most severe damage, and with the increase in the load, the maximum value point of the magnetic gradient constantly moves to the middle of the steel beam; thus the early warning of the failure state can be conducted. The relationship curve between the magnetic field gradient and stress can obviously distinguish the entire stress process of the component, which includes four states: initial, yield, plasticity, and damage. The stress state and damage state of components can be characterized using the magnetic field gradient index. This study can provide a reference and basis for the application of metal magnetic memory detection technology in the quantitative assessment and early warning of the damage status of bridge steel box beams.
-
表 1 Q345qC 鋼材化學成分(質量分數)
Table 1. Q345qC steel chemical composition
% C Si Mn S P 0.15 0.38 1.6 $ \leqslant $0.035 $ \leqslant $0.035 表 2 Q345qC鋼材的力學參數
Table 2. Mechanical parameters of Q345qC steel
Elasticity modulus/GPa Yield strength/
MPaStrength of extension/MPa Elongation/
%201 $ \geqslant $345 510 $ \geqslant $21 www.77susu.com -
參考文獻
[1] Chen J B. Research on Mechanical Performance of Steel Box Girder of a Viaduct Reconstruction Project [Dissertation]. Changsha: Central South University, 2009陳建波. 某高架橋改造工程鋼箱梁力學性能研究[學位論文]. 長沙: 中南大學, 2009 [2] Yao N. Research on Relative Methods of Damage Inspecting and Safety Appraisal of Bridge Steel Structures in Service [Dissertation]. Beijing: Tsinghua University, 2009姚南. 在役橋梁鋼結構損傷檢測與安全評估相關方法的研究[學位論文]. 北京: 清華大學, 2009 [3] Xu B S, Dong L H. Metal Magnetic Memory Testing Method in Remanufacturing Quality Control. Beijing: National Defense Industry Press, 2015徐濱士, 董麗虹. 再制造質量控制中的金屬磁記憶檢測技術. 北京: 國防工業出版社, 2015 [4] Shi P P. Quantitative Study of Micro-Magnetic Nondestructive Testing for Stress and Defect in Ferromagnetic Materials [Dissertation]. Xi'an: Xidian University, 2017時朋朋. 鐵磁材料應力和缺陷的微磁檢測定量化研究[學位論文]. 西安: 西安電子科技大學, 2017 [5] Bulte D P, Langman R A. Origins of the magnetomechanical effect. J Magn Magn Mater, 2002, 251(2): 229 doi: 10.1016/S0304-8853(02)00588-7 [6] Dubov A A. A study of metal properties using the method of magnetic memory. Met Sci Heat Treat, 1997, 39(9): 401 doi: 10.1007/BF02469065 [7] Xing H Y, Xu M Q, Li J W. Magnetic Memory Testing Technology and Engineering Application. Beijing: China Petrochemical Press, 2011邢海燕, 徐敏強, 李建偉. 磁記憶檢測技術及工程應用. 北京: 中國石化出版社, 2011 [8] Su S Q, Liu X W, Wang W, et al. Progress and key problems in the research on metal magnetic memory testing technology. Chin J Eng, 2020, 42(12): 1557蘇三慶, 劉馨為, 王威, 等. 金屬磁記憶檢測技術研究新進展與關鍵問題. 工程科學學報, 2020, 42(12):1557 [9] Shi P P, Su S Q, Chen Z M. Overview of researches on the nondestructive testing method of metal magnetic memory: Status and challenges. J Nondestruct Eval, 2020, 39(2): 1 [10] Qian Z C, Huang H H, Han G, et al. Review on metal magnetic memory detection technology in remanufacturing and case study in engineering. J Mech Eng, 2018, 54(17): 235 doi: 10.3901/JME.2018.17.235錢正春, 黃海鴻, 韓剛, 等. 面向再制造的金屬磁記憶檢測技術研究綜述及工程應用案例. 機械工程學報, 2018, 54(17):235 doi: 10.3901/JME.2018.17.235 [11] Su S Q, Ma X P, Wang W, et al. Stress-dependent magnetic charge model for micro-defects of steel wire based on the magnetic memory method. Res Nondestruct Eval, 2020, 31(1): 24 doi: 10.1080/09349847.2019.1617914 [12] Ma X P, Su S Q, Wang W, et al. Damage location and numerical simulation for steel wire under torsion based on magnetic memory method. Int J Appl Electromagn Mech, 2019, 60(2): 223 doi: 10.3233/JAE-180075 [13] Su S Q, Wang W. Non-destructive Testing of Building Steel Structure with Magnetic Memory. Beijing: Science Press, 2019蘇三慶, 王威. 建筑鋼結構磁記憶無損檢測. 北京: 科學出版社, 2019 [14] Yi S C, Wang W, Su S Q. Bending experimental study on metal magnetic memory signal based on von Mises yield criterion. Int J Appl Electromagn Mech, 2015, 49(4): 547 doi: 10.3233/JAE-150067 [15] Su S Q, Qin Y L, Wang W, et al. Numerical simulation of stress-magnetization effect for bending states of Q235b steel beam based on magnetic memory. Mater Sci Technol, 2020, 28(5): 11蘇三慶, 秦彥龍, 王威, 等. 基于磁記憶的Q235b受彎鋼梁力磁效應數值模擬. 材料科學與工藝, 2020, 28(5):11 [16] Yao K. Experimental Research on Testing and Evaluation of Early Damage of Ferromagnetic Materials Based on Metal Magnetic Memory Method [Dissertation]. Beijing: Beijing Jiaotong University, 2014姚凱. 基于金屬磁記憶法的鐵磁材料早期損傷檢測與評價的實驗研究[學位論文]. 北京: 北京交通大學, 2014 [17] Ren J L, Lin J M. Metal Magnetic Memory Detection Technology. Beijing: China Electric Power Press, 2000任吉林, 林俊明. 金屬磁記憶檢測技術. 北京: 中國電力出版社, 2000 [18] Yao K, Wang Z D, Deng B, et al. Experimental research on metal magnetic memory method. Exp Mech, 2012, 52(3): 305 doi: 10.1007/s11340-011-9490-3 [19] Ren J L, Lin J M. Electromagnetic Nondestructive Testing. Beijing: Science Press, 2008任吉林, 林俊明. 電磁無損檢測. 北京: 科學出版社, 2008 [20] Jiles D. Introduction to Magnetism and Magnetic Materials. 3rd ed. London: Chapman and Hall Press, 2016 [21] Jiles D C. Theory of the magnetomechanical effect. J Phys D Appl Phys, 1995, 28(8): 1537 doi: 10.1088/0022-3727/28/8/001 [22] Yi S C, Wang W, Su S Q, et al. Using the characteristic parameters of magnetic memory signal to evaluate the tensile stress state. J Vib Meas Diagn, 2017, 37(4): 667易術春, 王威, 蘇三慶, 等. 利用磁記憶信號特征參數表征拉伸應力狀態. 振動 測試與診斷, 2017, 37(4):667 [23] Jiles D C, Devine M K. Recent developments in modeling of the stress derivative of magnetization in ferromagnetic materials. J Appl Phys, 1994, 76(10): 7015 doi: 10.1063/1.358072 [24] Sablik M J, Jiles D C. Coupled magnetoelastic theory of magnetic and magnetostrictive hysteresis. IEEE Trans Magn, 1993, 29(4): 2113 doi: 10.1109/20.221036 [25] Yang E, Li L M, Chen X. Magnetic field aberration induced by cycle stress. J Magn Magn Mater, 2007, 312(1): 72 doi: 10.1016/j.jmmm.2006.09.019 [26] Cullity B D, Graham C D. Introduction to Magnetic Materials. 2nd Ed. Hoboken: John Wiley Press, 2008 -