<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

基于IPSO-GRU深度學習算法的海底管道缺陷尺寸磁記憶定量反演模型

邢海燕 王松弘澤 弋鳴 楊健平 朱孔陽 劉超

邢海燕, 王松弘澤, 弋鳴, 楊健平, 朱孔陽, 劉超. 基于IPSO-GRU深度學習算法的海底管道缺陷尺寸磁記憶定量反演模型[J]. 工程科學學報, 2022, 44(5): 911-919. doi: 10.13374/j.issn2095-9389.2020.11.06.001
引用本文: 邢海燕, 王松弘澤, 弋鳴, 楊健平, 朱孔陽, 劉超. 基于IPSO-GRU深度學習算法的海底管道缺陷尺寸磁記憶定量反演模型[J]. 工程科學學報, 2022, 44(5): 911-919. doi: 10.13374/j.issn2095-9389.2020.11.06.001
XING Hai-yan, WANG Song-hong-ze, YI Ming, YANG Jian-ping, ZHU Kong-yang, LIU Chao. Metal magnetic memory quantitative inversion model based on IPSO-GRU algorithm for detecting submarine pipeline defect[J]. Chinese Journal of Engineering, 2022, 44(5): 911-919. doi: 10.13374/j.issn2095-9389.2020.11.06.001
Citation: XING Hai-yan, WANG Song-hong-ze, YI Ming, YANG Jian-ping, ZHU Kong-yang, LIU Chao. Metal magnetic memory quantitative inversion model based on IPSO-GRU algorithm for detecting submarine pipeline defect[J]. Chinese Journal of Engineering, 2022, 44(5): 911-919. doi: 10.13374/j.issn2095-9389.2020.11.06.001

基于IPSO-GRU深度學習算法的海底管道缺陷尺寸磁記憶定量反演模型

doi: 10.13374/j.issn2095-9389.2020.11.06.001
基金項目: 黑龍江省自然科學基金聯合引導資助項目(LH2019A004);國家自然科學基金資助項目(11272084)
詳細信息
    通訊作者:

    E-mail: xxhhyyhit@163.com

  • 中圖分類號: TG441.7

Metal magnetic memory quantitative inversion model based on IPSO-GRU algorithm for detecting submarine pipeline defect

More Information
  • 摘要: 針對海底管道缺陷磁記憶定量反演的難題,提出一種基于改進粒子群優化的門控循環神經網絡模型,即IPSO-GRU模型。以兩端焊有盲板的X52管道作為實驗材料,其上預制有不同直徑、深度的缺陷,采用TSC-5M-32磁記憶檢測儀,外接11-6W非接觸探頭,進行水下磁記憶檢測試驗,提取不同缺陷尺寸的磁記憶信號特征值。考慮到磁記憶信號特征值隨缺陷尺寸呈復雜的非線性變化,引入門控循環神經網絡,利用其雙門結構能夠記憶缺陷處的信號特征,非線性回歸擬合能力強的特點,構建海底管道缺陷定量反演模型,進一步考慮到模型超參數選擇的隨機性,采用改進粒子群算法進行超參數尋優。驗證結果表明:該模型對缺陷深度反演平均精度達96%;對缺陷直徑反演平均精度達93%,為海底管道缺陷的磁記憶定量化識別與反演提供了新的思路和方法。

     

  • 圖  1  GRU結構圖。(a)GRU神經網絡結構;(b)GRU單元結構

    Figure  1.  GRU structure: (a) illustration of GRU neural network structure; (b) illustration of GRU cell

    圖  2  IPSO優化超參數流程圖

    Figure  2.  IPSO optimized hyper-parameter flowchart

    圖  3  實驗設備。(a)試驗管道;(b)實驗流程圖

    Figure  3.  Experimental equipment: (a) pipe specimen; (b) experimental flowchart

    圖  4  ΔHp與不同缺陷尺寸的關系。(a)缺陷直徑;(b)缺陷深度

    Figure  4.  Relationship between ΔHp and defect dimensions: (a) ΔHp vs defect diameter; (b) ΔHp vs defect depth

    圖  5  ΔHp/Δx與不同缺陷尺寸的關系。(a)缺陷直徑;(b)缺陷深度

    Figure  5.  Relationship between ΔHp/Δx and defect dimensions: (a) ΔHp/Δx vs defect dimensions diameter; (b) ΔHp/Δx vs defect dimensions depth

    圖  6  Ka與缺陷尺寸的關系。(a)Ka與缺陷直徑的關系;(b)Ka與缺陷深度的關系

    Figure  6.  Relationship between Ka and defect dimensions: (a) Ka vs defect diameter;(b) Ka vs defect depth

    圖  7  IPSO尋優圖。(a)PSO與IPSO尋優能力對比圖;(b)IPSO適應度迭代曲線;(c)第一隱含層節點數;(d)第二隱含層節點;(e)學習率

    Figure  7.  IPSO optimization graph: (a) optimization capability comparison of PSO vs IPSO; (b) IPSO fitness value iteration curve; (c) first hidden nodes value; (d) second hidden nodes value; (e) learning rate

    圖  8  模型反演相對誤差。(a)缺陷深度相對誤差;(b)缺陷直徑相對誤差

    Figure  8.  Relative error graph of the model inversion: (a) defect depth; (b) defect diameter

    表  1  部分原始數據

    Table  1.   Partial raw data

    Data numberDefect diameter/mmDefect depth/mmΔHp/(A?m?1)(ΔHp/Δx)/(A?m?1?mm?1)Ka/(A?m?1?mm?1)Pipe pressure /MPa
    x1defect freedefect free5.894.250.870
    x2defect freedefect free6.363.871.628
    x310216.214.1324.160
    x410236.336.5548.428
    x510318.456.2433.170
    x610332.1612.6752.948
    x710426.066.5539.620
    x810447.818.6356.568
    x95413.775.2921.910
    x105423.1510.9338.768
    x1115435.858.7262.50
    x1215478.6317.66100.318
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Wang H H, Liu G H. Statistics and analysis of subsea pipeline accidents of CNOOC. China Offshore Oil Gas, 2017, 29(5): 157

    王紅紅, 劉國恒. 中國海油海底管道事故統計及分析. 中國海上油氣, 2017, 29(5):157
    [2] Dubov A A. A study of metal properties using the method of magnetic memory. Met Sci Heat Treat, 1997, 39(9): 401 doi: 10.1007/BF02469065
    [3] Su S Q, Liu X W, Wang W, et al. Progress and key problems in the research on metal magnetic memory testing technology. Chin J Eng, 2020, 42(12): 1557

    蘇三慶, 劉馨為, 王威, 等. 金屬磁記憶檢測技術研究新進展與關鍵問題. 工程科學學報, 2020, 42(12):1557
    [4] Min X H, Yang L J, Wang G Q, et al. Weak magnetism stress internal testing technology of the long distance oil-gas pipeline. J Mech Eng, 2017, 53(12): 19 doi: 10.3901/JME.2017.12.019

    閔希華, 楊理踐, 王國慶, 等. 長輸油氣管道弱磁應力內檢測技術. 機械工程學報, 2017, 53(12):19 doi: 10.3901/JME.2017.12.019
    [5] Liu B, Cao Y, Wang D, et al. Quantitative analysis of the magnetic memory yielding signal characteristics based on the LMTO algorithm. Chin J Sci Instrum, 2017, 38(6): 1413 doi: 10.3969/j.issn.0254-3087.2017.06.012

    劉斌, 曹陽, 王締, 等. 基于LMTO算法磁記憶屈服信號的定量化分析. 儀器儀表學報, 2017, 38(6):1413 doi: 10.3969/j.issn.0254-3087.2017.06.012
    [6] Venkatachalapathi N, basha S M J, Raju G J, et al. Characterization of fatigued steel states with metal magnetic memory method. Mater Today:Proc, 2018, 5(2): 8645 doi: 10.1016/j.matpr.2018.04.002
    [7] Jiao J N. Damage Testing of the Metal Pipeline Based on Metal Magnetic Memory and Research on Evaluation Methed [Dissertation]. Harbin: Harbin Institute of Technology, 2015

    焦江娜. 基于磁記憶的金屬管道損傷檢測及評估方法研究[學位論文]. 哈爾濱: 哈爾濱工業大學, 2015
    [8] Shi P P, Hao S. Analytical solution of magneto-mechanical magnetic dipole model for metal magnetic memory method. Acta Phys Sin, 2021, 70(3): 105

    時朋朋, 郝帥. 磁記憶檢測的力磁耦合型磁偶極子理論及解析解. 物理學報, 2021, 70(3):105
    [9] Bao S, Zhao Z Y, Jin P F, et al. Study on the characteristics of magnetic memory signals at ferromagnetic material defects. Eng Mech, 2020, 37(Sup 1): 371

    包勝, 趙政燁, 金鵬飛, 等. 鐵磁性材料缺陷處的磁記憶信號特征分析. 工程力學, 2020, 37(增刊1): 371
    [10] Xu K S, Yang K, Liu J, et al. Study on metal magnetic memory signal of buried defect in fracture process. J Magn Magn Mater, 2020, 498: 166139 doi: 10.1016/j.jmmm.2019.166139
    [11] Xu K S, Feng M G, Qiu X X. Distinguishing welding defects from the stress concentration zone using metal magnetic memory field parameters. Trans Indian Inst Met, 2019, 72(2): 343 doi: 10.1007/s12666-018-1485-7
    [12] Xu K S, Liu J W, Yang K, et al. Effect of applied load and thermal treatment on the magnetic memory signal of defect-bearing Q345R steel samples. J Magn Magn Mater, 2021, 539: 168366 doi: 10.1016/j.jmmm.2021.168366
    [13] Li L G, Wan Y, Wang Y, et al. Quantitative inversion of pipeline defect depth based on support vector machine and magnetic memory technology. Corros Prot, 2020, 41(1): 29 doi: 10.11973/fsyfh-202001006

    李立剛, 萬勇, 王宇, 等. 基于支持向量機和磁記憶技術的管道缺陷深度的定量化反演研究. 腐蝕與防護, 2020, 41(1):29 doi: 10.11973/fsyfh-202001006
    [14] Wan Y, Wang Y, Yang Y, et al. Multi-characteristic threshold identification method for pipeline defect types. Oil Gas Storage Transp, 2020, 39(3): 268

    萬勇, 王宇, 楊勇, 等. 管道缺陷類型多特征量閾值識別方法. 油氣儲運, 2020, 39(3):268
    [15] Yi F, Li Z X, Lü H Q, et al. Defect recognition by metal magnetic memory detection of pipelines based on the fuzzy kernel function SVM. Acta Petrolei Sin, 2010, 31(5): 863 doi: 10.7623/syxb201005030

    易方, 李著信, 呂宏慶, 等. 基于模糊核支持向量機的管道磁記憶檢測缺陷識別. 石油學報, 2010, 31(5):863 doi: 10.7623/syxb201005030
    [16] El-Abbasy M S, Senouci A, Zayed T, et al. A condition assessment model for oil and gas pipelines using integrated simulation and analytic network process. Struct Infrastructure Eng, 2015, 11(3): 263 doi: 10.1080/15732479.2013.873471
    [17] Wang S, Huang H H, Han G, et al. Quantitative evaluation of magnetic memory signal based on PCA & GA-BP neural network. J Electron Meas Instrum, 2018, 32(10): 190

    王帥, 黃海鴻, 韓剛, 等. 基于PCA與GA-BP神經網絡的磁記憶信號定量評價. 電子測量與儀器學報, 2018, 32(10):190
    [18] Luo Z S, Zhao L X, Wang X W. Failure model for pitting fatigue damaged pipeline of subsea based on dynamic Bayesian network. Surf Technol, 2020, 49(1): 269

    駱正山, 趙樂新, 王小完. 基于動態貝葉斯網絡的海底管道點蝕疲勞損傷失效模型研究. 表面技術, 2020, 49(1):269
    [19] Luo Z S, Qin Y, Zhang X S, et al. Prediction of external corrosion rate of marine pipelines based on LASSO-WOA-LSSVM. Surface Technology, 2021(5): 245

    駱正山, 秦越, 張新生, 等. 基于LASSO-WOA-LSSVM的海洋管線外腐蝕速率預測. 表面技術, 2021(5):245
    [20] Xing H Y, Chen S Y, Li S Q, et al. MMM accurate location model of early hidden damage in welded joints based on PSO and MLE. Chin J Eng, 2017, 39(10): 1559

    邢海燕, 陳思雨, 李思岐, 等. 基于粒子群最大似然估計的焊縫早期隱性損傷磁記憶精確定位模型. 工程科學學報, 2017, 39(10):1559
    [21] Xing H Y, Chen Y H, Li X F, et al. Magnetic memory identification model of mental weld defect levels based on dynamic immune fuzzy clustering. Chin J Sci Instrum, 2019, 40(11): 225

    邢海燕, 陳玉環, 李雪峰, 等. 基于動態免疫模糊聚類的金屬焊縫缺陷等級磁記憶識別模型. 儀器儀表學報, 2019, 40(11):225
    [22] Zhou W, Fan J C, Liu X Y, et al. Metal magnetic memory testing of the drilling riser pipeline steel based on pulsating-impact-fatigue test. Mater Sci Forum, 2020, 975: 15 doi: 10.4028/www.scientific.net/MSF.975.15
    [23] Zhao B X, Yao K, Wu L B, et al. Application of metal magnetic memory testing technology to the detection of stress corrosion defect. Appl Sci, 2020, 10(20): 7083 doi: 10.3390/app10207083
    [24] Cho K, Merrirnboer B V, Gulcehre C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[J/OL]. arXiv. org online (2014-6-3) [2021-5-1]. https://arxiv.org/abs/1406.1078
    [25] Kennedy J, Eberhart R. Particle swarm optimization // Proceedings of ICNN'95-IEEE International Conference on Neural Networks. Perth, 1995: 1942
  • 加載中
圖(8) / 表(1)
計量
  • 文章訪問數:  574
  • HTML全文瀏覽量:  466
  • PDF下載量:  50
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-11-06
  • 網絡出版日期:  2021-09-29
  • 刊出日期:  2022-05-25

目錄

    /

    返回文章
    返回