-
摘要: 為探明超細全尾砂的濃密特性,開展量筒沉降實驗,小型和半工業深錐動態濃密試驗。結果表明,分子量1200萬的非離子型絮凝劑最利于尾砂沉降,隨絮凝劑單耗增加,溢流濁度降低,底流濃度基本不變。隨固體通量增加,溢流濁度增加,底流濃度降低。固體通量0.4 t·m?2·h?1,給料固體質量分數12%,絮凝劑單耗50 g·t?1的最佳參數條件下,小型和半工業動態濃密試驗的底流平均固體質量分數分別為62.8%和74.4%,泥層高度對底流濃度影響顯著。深錐濃密機底流固體質量分數隨泥層高度增加呈DoseResp函數增長,分為緩慢增長(泥層1~4 m)、快速增長(泥層4~7 m)和基本穩定(泥層超過7~8 m)3個階段,這跟尾砂絮團在不同泥層高度下的壓縮性能有關。可根據底流濃度與泥層高度的函數關系,調節泥層高度來滿足井下充填所需底流濃度。Abstract: In the future, the output of ultrafine full tailings will explode due to the massive mining of low-grade deposits and demand for the recovery of useful minerals. The best way to dispose of ultrafine full tailings is to prepare them into the paste for filling underground voids or surface stacking. The deep cone thickening of ultrafine full tailings is a key link of tailings paste disposal technology. In the thickening process of ultrafine full tailings, slow sedimentation velocity, high dosage of flocculant, excessive overflow turbidity, and low underflow concentration are the bottlenecks that restrict the application of disposal technology for ultrafine full tailings paste. To investigate the thickening characteristics of ultrafine full tailings, the sedimentation test in measuring cylinder, the small-scale and semi-industrial deep cone dynamic thickening tests were carried out. Results show that the nonionic flocculant with a molecular weight of 12 million is most beneficial for the settlement of the tailings. With increasing flocculant dosage, the turbidity of overflow decreases and underflow concentration remains unchanged. Upon increasing the solid flux, the turbidity of overflow increases and underflow concentration decreases. In particular, when the solid flux is 0.4 t·m?2·h?1, the feeding solid mass fraction is 12%, flocculant dosage is 50 g·t?1, and average solid mass fraction of the underflow of the small-scale and semi-industrial dynamic thickening test is 62.8% and 74.4%, respectively. Mud height has a significant influence on the underflow concentration. The solid mass fraction of the underflow of the deep cone thickener increases with the increasing mud height, and this process conforms to the DoseResp function. This growth process can be divided into three stages: (1) slow growth (mud height 1–4 m), (2) rapid growth (mud height 4–7 m), and (3) basic stable (mud height over 7–8 m). This is related to the compression performance of the tailings flocs at different mud heights. According to the function relation between the underflow concentration and mud height, the mud height can be adjusted to meet the required underflow concentration for underground backfilling.
-
表 1 小型動態濃密實驗方案和結果
Table 1. Small-scale dynamic thickening: experiment scheme and results
Solid flux /
(t·m?2·h?1)Flocculant dosage /
(g·t?1)Average turbidity of
overflow/10?6Average solid mass
fraction of
underflow /%0.2 40 69.2 61.0 0.3 60 40.7 61.0 0.4 30 184.5 60.5 0.5 50 77.3 59.5 www.77susu.com -
參考文獻
[1] Hou H Z, Li C P, Wang S Y, et al. Settling velocity variation of mud layer and particle settling characteristics in thickening of tailings. J Central South Univ Sci Technol, 2019, 50(6): 1428 doi: 10.11817/j.issn.1672-7207.2019.06.022侯賀子, 李翠平, 王少勇, 等. 尾礦濃密中泥層沉降速度變化及顆粒沉降特性. 中南大學學報(自然科學版), 2019, 50(6):1428 doi: 10.11817/j.issn.1672-7207.2019.06.022 [2] Wang K, Yang P, Hudsonedwards K, et al. Status and development for the prevention and management of tailings dam failure accidents. Chin J Eng, 2018, 40(5): 526王昆, 楊鵬, Karen Hudson-Edwards, 等. 尾礦庫潰壩災害防控現狀及發展. 工程科學學報, 2018, 40(5):526 [3] Ruan Z E, Li C P, Zhong Y. Development progress and trend of whole-tailings particles’ migration behavior during preparation of whole-tailings paste. Met Mine, 2014(12): 13阮竹恩, 李翠平, 鐘媛. 全尾膏體制備過程中尾礦顆粒運移行為研究進展與趨勢. 金屬礦山, 2014(12):13 [4] Wu A X, Yang Y, Cheng H Y, et al. Status and prospects of paste technology in China. Chin J Eng, 2018, 40(5): 517吳愛祥, 楊瑩, 程海勇, 等. 中國膏體技術發展現狀與趨勢. 工程科學學報, 2018, 40(5):517 [5] Zhou Q, Liu J H, Wu A X, et al. Effect and mechanism of synergist on tailings slurry thickening performance. Chin J Eng, 2019, 41(11): 1405周茜, 劉娟紅, 吳愛祥, 等. 濃密增效劑對尾砂料漿濃密性能的影響及機理. 工程科學學報, 2019, 41(11):1405 [6] Tan C K, Setiawan R, Bao J, et al. Studies on parameter estimation and model predictive control of paste thickeners. J Process Control, 2015, 28: 1 doi: 10.1016/j.jprocont.2015.02.002 [7] Li G C, Wang H J, Jiao H Z, et al. Physical simulation of dewaterability law of unclassified tailings in steady state thickener. Chin J Nonferrous Met, 2019, 29(3): 649李公成, 王洪江, 焦華喆, 等. 穩態濃密機全尾砂脫水規律物理模擬. 中國有色金屬學報, 2019, 29(3):649 [8] Ruan Z E, Wu A X, Wang J D, et al. Flocculation and settling behavior of unclassified tailings based on measurement of floc chord length. Chin J Eng, 2020, 42(8): 980阮竹恩, 吳愛祥, 王建棟, 等. 基于絮團弦長測定的全尾砂絮凝沉降行為. 工程科學學報, 2020, 42(8):980 [9] Wu A X, Yang Y, Wang Y M, et al. Mathematical modelling of underflow concentration in a deep cone thickener and analysis of the dynamic compaction mechanism. Chin J Eng, 2018, 40(2): 152吳愛祥, 楊瑩, 王貽明, 等. 深錐濃密機底流濃度模型及動態壓密機理分析. 工程科學學報, 2018, 40(2):152 [10] Yin S H, Shao Y J, Wu A X, et al. A systematic review of paste technology in metal mines for cleaner production in China. J Clean Prod, 2020, 247: 119590 doi: 10.1016/j.jclepro.2019.119590 [11] Wu A X, Ruan Z E, Wang J D, et al. Optimizing the flocculation behavior of ultrafine tailings by ultra-flocculation. Chin J Eng, 2019, 41(8): 981吳愛祥, 阮竹恩, 王建棟, 等. 基于超級絮凝的超細尾砂絮凝行為優化. 工程科學學報, 2019, 41(8):981 [12] Li S, Wang X M, Zhang Q L. Dynamic experiments on flocculation and sedimentation of argillized ultrafine tailings using fly-ash-based magnetic coagulant. Trans Nonferrous Met Soc China, 2016, 26(7): 1975 doi: 10.1016/S1003-6326(16)64308-X [13] Li L T, Yang Z Q, Wang Z H, et al. Experiments on the flocculation and settling characteristics of the slurry with extra-fine iron total tailings in angang mine. Min Res Dev, 2017, 37(3): 19李立濤, 楊志強, 王忠紅, 等. 鞍鋼礦山超細鐵礦全尾砂漿絮凝沉降特性試驗. 礦業研究與開發, 2017, 37(3):19 [14] Bian J W, Wang X M, Xiao C C. Experimental study on dynamic flocculating sedimentation of unclassified tailings. J Central South Univ Sci Technol, 2017, 48(12): 3278 doi: 10.11817/j.issn.1672-7207.2017.12.019卞繼偉, 王新民, 肖崇春. 全尾砂動態絮凝沉降試驗研究. 中南大學學報(自然科學版), 2017, 48(12):3278 doi: 10.11817/j.issn.1672-7207.2017.12.019 [15] Li C H, Shi Y Q, Liu P, et al. Analysis of the sedimentation characteristics of ultrafine tailings based on an orthogonal experiment. Adv Mater Sci Eng, 2019, 2019: 1 [16] Shi X Z, Chen F, Lu E W, et al. Experimental study on sedimentation characteristics of ultrafine leach residue after flocculation. Min Metall Eng, 2018, 38(2): 1 doi: 10.3969/j.issn.0253-6099.2018.02.001史秀志, 陳飛, 盧二偉, 等. 超細粒級浸出渣絮凝沉降特性試驗研究. 礦冶工程, 2018, 38(2):1 doi: 10.3969/j.issn.0253-6099.2018.02.001 [17] Gao W H, Wang H J, Chen H, et al. Study on main factors of underflow concentration in the dynamics thickening process of tailings. Met Mine, 2016(11): 102 doi: 10.3969/j.issn.1001-1250.2016.11.022高維鴻, 王洪江, 陳輝, 等. 尾礦動態濃密過程中底流濃度主要影響因素研究. 金屬礦山, 2016(11):102 doi: 10.3969/j.issn.1001-1250.2016.11.022 [18] Zhou X, Jin X G, Liu P Z, et al. Prediction model for underflow concentration of deep cone thickener based on dynamic thickening experimentation. Met Mine, 2017(12): 39 doi: 10.3969/j.issn.1001-1250.2017.12.008周旭, 金曉剛, 劉培正, 等. 基于動態濃密試驗的深錐濃密機底流濃度預測模型. 金屬礦山, 2017(12):39 doi: 10.3969/j.issn.1001-1250.2017.12.008 [19] Zhu L Y, Lyu W S, Yang P, et al. Effect of ultrasound on the flocculation-sedimentation and thickening of unclassified tailings. Ultrason Sonochemistry, 2020, 66: 104984 doi: 10.1016/j.ultsonch.2020.104984 [20] Jiao H Z, Wang S F, Yang Y X, et al. Water recovery improvement by shearing of gravity-thickened tailings for cemented paste backfill. J Clean Prod, 2020, 245: 118882 doi: 10.1016/j.jclepro.2019.118882 [21] Wu A X, Ai C M, Wang Y M, et al. Test and mechanism analysis on improving rheological property of paste with pumping agent. J Central South Univ Sci Technol, 2016, 47(8): 2752 doi: 10.11817/j.issn.1672-7207.2016.08.029吳愛祥, 艾純明, 王貽明, 等. 泵送劑改善膏體流變性能試驗及機理分析. 中南大學學報(自然科學版), 2016, 47(8):2752 doi: 10.11817/j.issn.1672-7207.2016.08.029 [22] He P, Lin G J, Liu M Q, et al. Theory and application of uniform designs. Sci Sin Math, 2020, 50(5): 561 doi: 10.1360/SSM-2020-0065賀平, 林共進, 劉民千, 等. 均勻設計理論與應用. 中國科學:數學, 2020, 50(5):561 doi: 10.1360/SSM-2020-0065 [23] Qi C C, Fourie A. Cemented paste backfill for mineral tailings management: Review and future perspectives. Miner Eng, 2019, 144: 106025 doi: 10.1016/j.mineng.2019.106025 [24] Jiao H Z, Wang S F, Wu A X, et al. Shear evolution and connected mechanism of pore structure in thickening bed of paste. J Central South Univ Sci Technol, 2019, 50(5): 1173 doi: 10.11817/j.issn.1672-7207.2019.05.021焦華喆, 王樹飛, 吳愛祥, 等. 膏體濃密床層孔隙結構剪切演化與連通機理. 中南大學學報(自然科學版), 2019, 50(5):1173 doi: 10.11817/j.issn.1672-7207.2019.05.021 [25] Gladman B R, Rudman M, Scales P J. The effect of shear on gravity thickening: Pilot scale modelling. Chem Eng Sci, 2010, 65(14): 4293 doi: 10.1016/j.ces.2010.04.010 [26] Wang H J, Wang Y, Wu A X, et al. Dynamic compaction and static compaction mechanism of fine unclassified tailings. J Univ Sci Technol Beijing, 2013, 35(5): 566王洪江, 王勇, 吳愛祥, 等. 細粒全尾動態壓密與靜態壓密機理. 北京科技大學學報, 2013, 35(5):566 [27] Yang Y, Wu A X, Wang H J, et al. Mechanics model of rake torque based on sludge height and its mechanism analysis. J Central South Univ Sci Technol, 2019, 50(1): 165 doi: 10.11817/j.issn.1672-7207.2019.01.021楊瑩, 吳愛祥, 王洪江, 等. 基于泥層高度的耙架扭矩力學模型及機理分析. 中南大學學報(自然科學版), 2019, 50(1):165 doi: 10.11817/j.issn.1672-7207.2019.01.021 -