<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

超細全尾砂深錐動態絮凝濃密試驗

王洪江 王小林 張璽 吳愛祥 田志剛 杜向紅

王洪江, 王小林, 張璽, 吳愛祥, 田志剛, 杜向紅. 超細全尾砂深錐動態絮凝濃密試驗[J]. 工程科學學報, 2022, 44(2): 163-169. doi: 10.13374/j.issn2095-9389.2020.11.05.005
引用本文: 王洪江, 王小林, 張璽, 吳愛祥, 田志剛, 杜向紅. 超細全尾砂深錐動態絮凝濃密試驗[J]. 工程科學學報, 2022, 44(2): 163-169. doi: 10.13374/j.issn2095-9389.2020.11.05.005
WANG Hong-jiang, WANG Xiao-lin, ZHANG Xi, WU Ai-xiang, TIAN Zhi-gang, DU Xiang-hong. Deep cone dynamic flocculation thickening of ultrafine full tailings[J]. Chinese Journal of Engineering, 2022, 44(2): 163-169. doi: 10.13374/j.issn2095-9389.2020.11.05.005
Citation: WANG Hong-jiang, WANG Xiao-lin, ZHANG Xi, WU Ai-xiang, TIAN Zhi-gang, DU Xiang-hong. Deep cone dynamic flocculation thickening of ultrafine full tailings[J]. Chinese Journal of Engineering, 2022, 44(2): 163-169. doi: 10.13374/j.issn2095-9389.2020.11.05.005

超細全尾砂深錐動態絮凝濃密試驗

doi: 10.13374/j.issn2095-9389.2020.11.05.005
基金項目: 國家自然科學基金資助項目(51834001)
詳細信息
    通訊作者:

    王小林,E-mail: 18706841567@163.com

    張璽,E-mail: 544484377@qq.com

  • 中圖分類號: TD853

Deep cone dynamic flocculation thickening of ultrafine full tailings

More Information
  • 摘要: 為探明超細全尾砂的濃密特性,開展量筒沉降實驗,小型和半工業深錐動態濃密試驗。結果表明,分子量1200萬的非離子型絮凝劑最利于尾砂沉降,隨絮凝劑單耗增加,溢流濁度降低,底流濃度基本不變。隨固體通量增加,溢流濁度增加,底流濃度降低。固體通量0.4 t·m?2·h?1,給料固體質量分數12%,絮凝劑單耗50 g·t?1的最佳參數條件下,小型和半工業動態濃密試驗的底流平均固體質量分數分別為62.8%和74.4%,泥層高度對底流濃度影響顯著。深錐濃密機底流固體質量分數隨泥層高度增加呈DoseResp函數增長,分為緩慢增長(泥層1~4 m)、快速增長(泥層4~7 m)和基本穩定(泥層超過7~8 m)3個階段,這跟尾砂絮團在不同泥層高度下的壓縮性能有關。可根據底流濃度與泥層高度的函數關系,調節泥層高度來滿足井下充填所需底流濃度。

     

  • 圖  1  全尾砂粒度分布曲線

    Figure  1.  Particle size distribution of full tailings

    圖  2  實驗裝置。(a)小型動態濃密裝置;(b)半工業深錐濃密裝置

    Figure  2.  Experimental facility: (a) small-scale dynamic thickener; (b) semi-industrial deep cone thickener

    圖  3  不同類型絮凝劑作用下的尾砂沉降高度曲線

    Figure  3.  Settlement height curve of tailings under the action of different types of flocculants

    圖  4  固體通量與給料固體質量分數關系

    Figure  4.  Relationship between the solid flux and feeding solid mass fraction

    圖  5  尾砂沉降速度與絮凝劑單耗關系

    Figure  5.  Relationship between the settling velocity of tailings and flocculant dosage

    圖  6  深錐濃密機底流固體質量分數與泥層高度關系

    Figure  6.  Relationship between the solid mass fraction of underflow and mud height in the deep cone thickener

    圖  7  尾砂絮團的簡單立體結構。(a)平面圖;(b)側面圖

    Figure  7.  Simple three-dimensional structure of tailings flocs: (a) plan; (b) side

    圖  8  尾砂絮團的錐體結構。(a)平面圖;(b)側面圖

    Figure  8.  Pyramidal structure of tailings flocs: (a) plan; (b) side

    表  1  小型動態濃密實驗方案和結果

    Table  1.   Small-scale dynamic thickening: experiment scheme and results

    Solid flux /
    (t·m?2·h?1)
    Flocculant dosage /
    (g·t?1)
    Average turbidity of
    overflow/10?6
    Average solid mass
    fraction of
    underflow /%
    0.24069.261.0
    0.36040.761.0
    0.430184.560.5
    0.55077.359.5
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Hou H Z, Li C P, Wang S Y, et al. Settling velocity variation of mud layer and particle settling characteristics in thickening of tailings. J Central South Univ Sci Technol, 2019, 50(6): 1428 doi: 10.11817/j.issn.1672-7207.2019.06.022

    侯賀子, 李翠平, 王少勇, 等. 尾礦濃密中泥層沉降速度變化及顆粒沉降特性. 中南大學學報(自然科學版), 2019, 50(6):1428 doi: 10.11817/j.issn.1672-7207.2019.06.022
    [2] Wang K, Yang P, Hudsonedwards K, et al. Status and development for the prevention and management of tailings dam failure accidents. Chin J Eng, 2018, 40(5): 526

    王昆, 楊鵬, Karen Hudson-Edwards, 等. 尾礦庫潰壩災害防控現狀及發展. 工程科學學報, 2018, 40(5):526
    [3] Ruan Z E, Li C P, Zhong Y. Development progress and trend of whole-tailings particles’ migration behavior during preparation of whole-tailings paste. Met Mine, 2014(12): 13

    阮竹恩, 李翠平, 鐘媛. 全尾膏體制備過程中尾礦顆粒運移行為研究進展與趨勢. 金屬礦山, 2014(12):13
    [4] Wu A X, Yang Y, Cheng H Y, et al. Status and prospects of paste technology in China. Chin J Eng, 2018, 40(5): 517

    吳愛祥, 楊瑩, 程海勇, 等. 中國膏體技術發展現狀與趨勢. 工程科學學報, 2018, 40(5):517
    [5] Zhou Q, Liu J H, Wu A X, et al. Effect and mechanism of synergist on tailings slurry thickening performance. Chin J Eng, 2019, 41(11): 1405

    周茜, 劉娟紅, 吳愛祥, 等. 濃密增效劑對尾砂料漿濃密性能的影響及機理. 工程科學學報, 2019, 41(11):1405
    [6] Tan C K, Setiawan R, Bao J, et al. Studies on parameter estimation and model predictive control of paste thickeners. J Process Control, 2015, 28: 1 doi: 10.1016/j.jprocont.2015.02.002
    [7] Li G C, Wang H J, Jiao H Z, et al. Physical simulation of dewaterability law of unclassified tailings in steady state thickener. Chin J Nonferrous Met, 2019, 29(3): 649

    李公成, 王洪江, 焦華喆, 等. 穩態濃密機全尾砂脫水規律物理模擬. 中國有色金屬學報, 2019, 29(3):649
    [8] Ruan Z E, Wu A X, Wang J D, et al. Flocculation and settling behavior of unclassified tailings based on measurement of floc chord length. Chin J Eng, 2020, 42(8): 980

    阮竹恩, 吳愛祥, 王建棟, 等. 基于絮團弦長測定的全尾砂絮凝沉降行為. 工程科學學報, 2020, 42(8):980
    [9] Wu A X, Yang Y, Wang Y M, et al. Mathematical modelling of underflow concentration in a deep cone thickener and analysis of the dynamic compaction mechanism. Chin J Eng, 2018, 40(2): 152

    吳愛祥, 楊瑩, 王貽明, 等. 深錐濃密機底流濃度模型及動態壓密機理分析. 工程科學學報, 2018, 40(2):152
    [10] Yin S H, Shao Y J, Wu A X, et al. A systematic review of paste technology in metal mines for cleaner production in China. J Clean Prod, 2020, 247: 119590 doi: 10.1016/j.jclepro.2019.119590
    [11] Wu A X, Ruan Z E, Wang J D, et al. Optimizing the flocculation behavior of ultrafine tailings by ultra-flocculation. Chin J Eng, 2019, 41(8): 981

    吳愛祥, 阮竹恩, 王建棟, 等. 基于超級絮凝的超細尾砂絮凝行為優化. 工程科學學報, 2019, 41(8):981
    [12] Li S, Wang X M, Zhang Q L. Dynamic experiments on flocculation and sedimentation of argillized ultrafine tailings using fly-ash-based magnetic coagulant. Trans Nonferrous Met Soc China, 2016, 26(7): 1975 doi: 10.1016/S1003-6326(16)64308-X
    [13] Li L T, Yang Z Q, Wang Z H, et al. Experiments on the flocculation and settling characteristics of the slurry with extra-fine iron total tailings in angang mine. Min Res Dev, 2017, 37(3): 19

    李立濤, 楊志強, 王忠紅, 等. 鞍鋼礦山超細鐵礦全尾砂漿絮凝沉降特性試驗. 礦業研究與開發, 2017, 37(3):19
    [14] Bian J W, Wang X M, Xiao C C. Experimental study on dynamic flocculating sedimentation of unclassified tailings. J Central South Univ Sci Technol, 2017, 48(12): 3278 doi: 10.11817/j.issn.1672-7207.2017.12.019

    卞繼偉, 王新民, 肖崇春. 全尾砂動態絮凝沉降試驗研究. 中南大學學報(自然科學版), 2017, 48(12):3278 doi: 10.11817/j.issn.1672-7207.2017.12.019
    [15] Li C H, Shi Y Q, Liu P, et al. Analysis of the sedimentation characteristics of ultrafine tailings based on an orthogonal experiment. Adv Mater Sci Eng, 2019, 2019: 1
    [16] Shi X Z, Chen F, Lu E W, et al. Experimental study on sedimentation characteristics of ultrafine leach residue after flocculation. Min Metall Eng, 2018, 38(2): 1 doi: 10.3969/j.issn.0253-6099.2018.02.001

    史秀志, 陳飛, 盧二偉, 等. 超細粒級浸出渣絮凝沉降特性試驗研究. 礦冶工程, 2018, 38(2):1 doi: 10.3969/j.issn.0253-6099.2018.02.001
    [17] Gao W H, Wang H J, Chen H, et al. Study on main factors of underflow concentration in the dynamics thickening process of tailings. Met Mine, 2016(11): 102 doi: 10.3969/j.issn.1001-1250.2016.11.022

    高維鴻, 王洪江, 陳輝, 等. 尾礦動態濃密過程中底流濃度主要影響因素研究. 金屬礦山, 2016(11):102 doi: 10.3969/j.issn.1001-1250.2016.11.022
    [18] Zhou X, Jin X G, Liu P Z, et al. Prediction model for underflow concentration of deep cone thickener based on dynamic thickening experimentation. Met Mine, 2017(12): 39 doi: 10.3969/j.issn.1001-1250.2017.12.008

    周旭, 金曉剛, 劉培正, 等. 基于動態濃密試驗的深錐濃密機底流濃度預測模型. 金屬礦山, 2017(12):39 doi: 10.3969/j.issn.1001-1250.2017.12.008
    [19] Zhu L Y, Lyu W S, Yang P, et al. Effect of ultrasound on the flocculation-sedimentation and thickening of unclassified tailings. Ultrason Sonochemistry, 2020, 66: 104984 doi: 10.1016/j.ultsonch.2020.104984
    [20] Jiao H Z, Wang S F, Yang Y X, et al. Water recovery improvement by shearing of gravity-thickened tailings for cemented paste backfill. J Clean Prod, 2020, 245: 118882 doi: 10.1016/j.jclepro.2019.118882
    [21] Wu A X, Ai C M, Wang Y M, et al. Test and mechanism analysis on improving rheological property of paste with pumping agent. J Central South Univ Sci Technol, 2016, 47(8): 2752 doi: 10.11817/j.issn.1672-7207.2016.08.029

    吳愛祥, 艾純明, 王貽明, 等. 泵送劑改善膏體流變性能試驗及機理分析. 中南大學學報(自然科學版), 2016, 47(8):2752 doi: 10.11817/j.issn.1672-7207.2016.08.029
    [22] He P, Lin G J, Liu M Q, et al. Theory and application of uniform designs. Sci Sin Math, 2020, 50(5): 561 doi: 10.1360/SSM-2020-0065

    賀平, 林共進, 劉民千, 等. 均勻設計理論與應用. 中國科學:數學, 2020, 50(5):561 doi: 10.1360/SSM-2020-0065
    [23] Qi C C, Fourie A. Cemented paste backfill for mineral tailings management: Review and future perspectives. Miner Eng, 2019, 144: 106025 doi: 10.1016/j.mineng.2019.106025
    [24] Jiao H Z, Wang S F, Wu A X, et al. Shear evolution and connected mechanism of pore structure in thickening bed of paste. J Central South Univ Sci Technol, 2019, 50(5): 1173 doi: 10.11817/j.issn.1672-7207.2019.05.021

    焦華喆, 王樹飛, 吳愛祥, 等. 膏體濃密床層孔隙結構剪切演化與連通機理. 中南大學學報(自然科學版), 2019, 50(5):1173 doi: 10.11817/j.issn.1672-7207.2019.05.021
    [25] Gladman B R, Rudman M, Scales P J. The effect of shear on gravity thickening: Pilot scale modelling. Chem Eng Sci, 2010, 65(14): 4293 doi: 10.1016/j.ces.2010.04.010
    [26] Wang H J, Wang Y, Wu A X, et al. Dynamic compaction and static compaction mechanism of fine unclassified tailings. J Univ Sci Technol Beijing, 2013, 35(5): 566

    王洪江, 王勇, 吳愛祥, 等. 細粒全尾動態壓密與靜態壓密機理. 北京科技大學學報, 2013, 35(5):566
    [27] Yang Y, Wu A X, Wang H J, et al. Mechanics model of rake torque based on sludge height and its mechanism analysis. J Central South Univ Sci Technol, 2019, 50(1): 165 doi: 10.11817/j.issn.1672-7207.2019.01.021

    楊瑩, 吳愛祥, 王洪江, 等. 基于泥層高度的耙架扭矩力學模型及機理分析. 中南大學學報(自然科學版), 2019, 50(1):165 doi: 10.11817/j.issn.1672-7207.2019.01.021
  • 加載中
圖(8) / 表(1)
計量
  • 文章訪問數:  959
  • HTML全文瀏覽量:  431
  • PDF下載量:  70
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-11-05
  • 網絡出版日期:  2021-02-20
  • 刊出日期:  2022-02-15

目錄

    /

    返回文章
    返回