<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

離散元法在磨礦設備及參數優化研究中的應用現狀

戴惠新 唐冬冬 王飛旺 謝佩 趙明珠

戴惠新, 唐冬冬, 王飛旺, 謝佩, 趙明珠. 離散元法在磨礦設備及參數優化研究中的應用現狀[J]. 工程科學學報, 2022, 44(3): 319-327. doi: 10.13374/j.issn2095-9389.2020.11.05.004
引用本文: 戴惠新, 唐冬冬, 王飛旺, 謝佩, 趙明珠. 離散元法在磨礦設備及參數優化研究中的應用現狀[J]. 工程科學學報, 2022, 44(3): 319-327. doi: 10.13374/j.issn2095-9389.2020.11.05.004
DAI Hui-xin, TANG Dong-dong, WANG Fei-wang, XIE Pei, ZHAO Ming-zhu. Application status of discrete element method in grinding equipment research and parameter optimization[J]. Chinese Journal of Engineering, 2022, 44(3): 319-327. doi: 10.13374/j.issn2095-9389.2020.11.05.004
Citation: DAI Hui-xin, TANG Dong-dong, WANG Fei-wang, XIE Pei, ZHAO Ming-zhu. Application status of discrete element method in grinding equipment research and parameter optimization[J]. Chinese Journal of Engineering, 2022, 44(3): 319-327. doi: 10.13374/j.issn2095-9389.2020.11.05.004

離散元法在磨礦設備及參數優化研究中的應用現狀

doi: 10.13374/j.issn2095-9389.2020.11.05.004
基金項目: 國家自然科學基金資助項目(51764023)
詳細信息
    通訊作者:

    E-mail: wangfw0310@qq.com

  • 中圖分類號: TD453

Application status of discrete element method in grinding equipment research and parameter optimization

More Information
  • 摘要: 介紹了離散元法(DEM)在磨礦領域的應用背景;解釋了DEM中Hertz-Mindlin 接觸模型和顆粒黏結模型的基本原理;分類綜述了DEM在球磨機、攪拌磨機和自磨機/半自磨機等三類磨礦設備及參數優化研究中的應用現狀;指出了DEM在磨礦領域研究中的獨特優勢及其發展方向。

     

  • 圖  1  礦粒–黏結系統的受力及位移[13]

    Figure  1.  Force–displacement behaviour of grain–cement system[13]

    表  1  接觸模型中使用的彈簧剛度和阻尼系數

    Table  1.   Spring stiffness and damping coefficients used in the contact model

    Coil typeNormal directionTangential direction
    Spring stiffness constant, K$ {K_{\text{n}}} = \dfrac{4}{3}{E^*}\sqrt {{R^*}{\delta _{\text{t}}}} $$ {K_{\text{t}}} = 8{G^*}\sqrt {{R^*}{\delta _{\text{n}}}} $
    Damping coefficient, C$ {C_{\text{n}}} = 2\sqrt {\dfrac{5}{6}} \dfrac{{\ln \varepsilon }}{{\sqrt {{{\ln }^2}\varepsilon + {{\text{π}} ^2}} }}\sqrt {{m^*}2{E^*}\sqrt {{R^*}{\delta _{\text{n}}}} } $$ {C_{\text{t}}} = 2\sqrt {\dfrac{5}{6}} \dfrac{{\ln \varepsilon }}{{\sqrt {{{\ln }^2}\varepsilon + {{\text{π}} ^2}} }}\sqrt {{K_{\text{t}}}{m^*}} $
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Han Q L, Tian Q J, Tian L. Application status of discrete element method in ball mill. Constr Mach Dig, 2011(1): 36

    韓清林, 田秋娟, 田磊. 離散元方法在球磨機中的應用現狀. 工程機械文摘, 2011(1):36
    [2] Tian Q J. Study on the Working Performances of Large Tumbling Ball Mill Based on the Discrete Element Method [Dissertation]. Changchun: Jilin University, 2011

    田秋娟. 基于離散元方法的大型球磨機工作性能研究[學位論文]. 長春: 吉林大學, 2011
    [3] Sang Y W, Zhang G W, Xiao X, et al. Application status of discrete element method in grinding equipment. Min Metall Eng, 2016, 36(suppl): 242

    桑艷偉, 張國旺, 肖驍, 等. 離散元法在磨礦設備中的應用現狀. 礦冶工程, 2016, 36(增刊): 242
    [4] Gao Q. Analysis Grinding of Horizontal Stirred Mill Based on Distinct Element Method [Dissertation]. Kunming: Kunming University of Science and Technology, 2016

    高強. 基于離散元法的攪拌球磨機磨礦分析與研究[學位論文]. 昆明: 昆明理工大學, 2016
    [5] Tian R X, Jiao H G, Bai J Y. An introduction of distinct element method and its application in mineral processing engineering. Coal Prep Technol, 2012(1): 72 doi: 10.3969/j.issn.1001-3571.2012.01.020

    田瑞霞, 焦紅光, 白璟宇. 離散元法在礦物加工工程中的應用現狀. 選煤技術, 2012(1):72 doi: 10.3969/j.issn.1001-3571.2012.01.020
    [6] Zhu H P, Zhou Z Y, Yang R Y, et al. Discrete particle simulation of particulate systems: Theoretical developments. Chem Eng Sci, 2007, 62(13): 3378 doi: 10.1016/j.ces.2006.12.089
    [7] Weerasekara N S, Powell M S, Cleary P W, et al. The contribution of DEM to the science of comminution. Powder Technol, 2013, 248: 3 doi: 10.1016/j.powtec.2013.05.032
    [8] Fang Z Q, Wu H L, Zhou X N. Analysis for the mechanical characteristics of contact models in the DEM simulation of a ball mill. Machinery, 2019, 46(2): 17

    方自強, 吳洪亮, 周享楠. 球磨機DEM仿真中接觸模型的精準性分析. 機械, 2019, 46(2):17
    [9] Tsuji Y, Tanaka T, Ishida T. Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe. Powder Technol, 1992, 71(3): 239 doi: 10.1016/0032-5910(92)88030-L
    [10] Mindlin R D. Compliance of elastic bodies in contact. J Appl Mech, 1949, 16(3): 259 doi: 10.1115/1.4009973
    [11] Cleary P W. Predicting charge motion, power draw, segregation and wear in ball mills using discrete element methods. Miner Eng, 1998, 11(11): 1061 doi: 10.1016/S0892-6875(98)00093-4
    [12] Di Renzo A, di Maio F P. Comparison of contact-force models for the simulation of collisions in DEM-based granular flow codes. Chem Eng Sci, 2004, 59(3): 525 doi: 10.1016/j.ces.2003.09.037
    [13] Potyondy D O, Cundall P A. A bonded-particle model for rock. Int J Rock Mech Min Sci, 2004, 41(8): 1329 doi: 10.1016/j.ijrmms.2004.09.011
    [14] Mishra B K, Rajamani R K. The discrete element method for the simulation of ball mills. Appl Math Model, 1992, 16(11): 598 doi: 10.1016/0307-904X(92)90035-2
    [15] Mishra B K, Rajamani R K. Simulation of charge motion in ball mills. Part 1: Experimental verifications. Int J Miner Process, 1994, 40(3-4): 171 doi: 10.1016/0301-7516(94)90042-6
    [16] Cleary P W. Recent advances in DEM modelling of tumbling mills. Miner Eng, 2001, 14(10): 1295 doi: 10.1016/S0892-6875(01)00145-5
    [17] Cleary P W, Sinnott M D, Morrison R D. DEM prediction of particle flows in grinding processes. Int J Numer Meth Fluids, 2008, 58(3): 319 doi: 10.1002/fld.1728
    [18] Weerasekara N S, Liu L X, Powell M S. Estimating energy in grinding using DEM modelling. Miner Eng, 2016, 85: 23 doi: 10.1016/j.mineng.2015.10.013
    [19] Jiang S Q, Ye Y X, Tan Y Q, et al. Discrete element simulation of particle motion in ball mills based on similarity. Powder Technol, 2018, 335: 91 doi: 10.1016/j.powtec.2018.05.012
    [20] Radziszewski P, Tarasiewicz S. Simulation of ball charge and liner wear. Wear, 1993, 169(1): 77 doi: 10.1016/0043-1648(93)90393-Z
    [21] Bian X L, Wang G Q, Wang H D, et al. Effect of lifters and mill speed on particle behaviour, torque, and power consumption of a tumbling ball mill: Experimental study and DEM simulation. Miner Eng, 2017, 105: 22 doi: 10.1016/j.mineng.2016.12.014
    [22] Peng Y X, Li T Q, Zhu Z C, et al. Discrete element method simulations of load behavior with mono-sized iron ore particles in a ball mill. Adv Mech Eng, 2017, 9(5): 1
    [23] Kalala J T, Breetzke M, Moys M H. Study of the influence of liner wear on the load behaviour of an industrial dry tumbling mill using the discrete element method (DEM). Int J Miner Process, 2008, 86(1-4): 33 doi: 10.1016/j.minpro.2007.10.001
    [24] Cleary P W, Owen P, Hoyer D I, et al. Prediction of mill liner shape evolution and changing operational performance during the liner life cycle: Case study of a Hicom mill. Int J Numer Meth Eng, 2010, 81(9): 1157 doi: 10.1002/nme.2721
    [25] Kiangi K, Potapov A, Moys M. DEM validation of media shape effects on the load behaviour and power in a dry pilot mill. Miner Eng, 2013, 46-47: 52 doi: 10.1016/j.mineng.2013.03.025
    [26] Yao F S. Application of large tower mill in cyanide fine grinding of gold concentrate. Gold Sci Technol, 2014, 22(3): 82 doi: 10.11872/j.issn.1005-2518.2014.03.082

    姚福善. 大型塔式磨機在金精礦氰化細磨中的應用. 黃金科學技術, 2014, 22(3):82 doi: 10.11872/j.issn.1005-2518.2014.03.082
    [27] Morrison R D, Cleary P W, Sinnott M D. Using DEM to compare the energy efficiency of pilot scale ball and tower mills. Miner Eng, 2009, 22(7-8): 665 doi: 10.1016/j.mineng.2009.01.016
    [28] Wang X, Xiao Z M, Long W. Simulation and analysis on media movement in tower mill based on DEM. Min Process Equip, 2015, 43(7): 74

    王鑫, 肖正明, 龍穩. 基于離散元法的塔磨機介質運動仿真分析. 礦山機械, 2015, 43(7):74
    [29] Sinnott M D, Cleary P W, Morrison R D. Is media shape important for grinding performance in stirred mills? Miner Eng, 2011, 24(2): 138
    [30] Sinnott M, Cleary P W, Morrison R. Analysis of stirred mill performance using DEM simulation: Part 1— Media motion, energy consumption and collisional environment. Miner Eng, 2006, 19(15): 1537 doi: 10.1016/j.mineng.2006.08.012
    [31] Cleary P W, Sinnott M, Morrison R. Analysis of stirred mill performance using DEM simulation: Part 2— Coherent flow structures, liner stress and wear, mixing and transport. Miner Eng, 2006, 19(15): 1551 doi: 10.1016/j.mineng.2006.08.013
    [32] Ren T Z, Li Z, Liu C Y, et al. Simulation of tower mill analysis based on discrete element method. China Powder Sci Technol, 2016, 22(4): 88

    任廷志, 李卓, 劉長遠, 等. 基于離散元法的塔磨機數值模擬分析. 中國粉體技術, 2016, 22(4):88
    [33] Xiao Z M, Wang X, Wu X, et al. Simulation analyses and experimental investigation on optimum matching of operating parameters of tower mill. China Mech Eng, 2016, 27(4): 483 doi: 10.3969/j.issn.1004-132X.2016.04.011

    肖正明, 王鑫, 伍星, 等. 塔磨機運行參數優化匹配的仿真分析與試驗研究. 中國機械工程, 2016, 27(4):483 doi: 10.3969/j.issn.1004-132X.2016.04.011
    [34] Sinnott M, Cleary P W, Morrison R D. Slurry flow in a tower mill. Miner Eng, 2011, 24(2): 152 doi: 10.1016/j.mineng.2010.11.002
    [35] Yang R Y, Jayasundara C T, Yu A B, et al. DEM simulation of the flow of grinding media in IsaMill. Miner Eng, 2006, 19(10): 984 doi: 10.1016/j.mineng.2006.05.002
    [36] Jayasundara C T, Yang R Y, Yu A B, et al. Discrete particle simulation of particle flow in the IsaMill process. Ind Eng Chem Res, 2006, 45(18): 6349 doi: 10.1021/ie060474s
    [37] Jayasundara C T, Yang R Y, Yu A B, et al. Discrete particle simulation of particle flow in IsaMill—Effect of grinding medium properties. Chem Eng J, 2008, 135(1-2): 103 doi: 10.1016/j.cej.2007.04.001
    [38] Jayasundara C T, Yang R Y, Yu A B, et al. Effects of disc rotation speed and media loading on particle flow and grinding performance in a horizontal stirred mill. Int J Miner Process, 2010, 96(1-4): 27 doi: 10.1016/j.minpro.2010.07.006
    [39] Jayasundara C T, Yang R Y, Yu A B, et al. Prediction of the disc wear in a model IsaMill and its effect on the flow of grinding media. Miner Eng, 2011, 24(14): 1586 doi: 10.1016/j.mineng.2011.08.011
    [40] Cleary P W, Sinnott M D, Pereira G G. Computational prediction of performance for a full scale Isamill: Part 1—Media motion and energy utilisation in a dry mill. Miner Eng, 2015, 79: 220 doi: 10.1016/j.mineng.2015.04.005
    [41] Cleary P W, Sinnott M D. Computational prediction of performance for a full scale Isamill: Part 2—Wet models of charge and slurry transport. Miner Eng, 2015, 79: 239 doi: 10.1016/j.mineng.2015.04.013
    [42] Jayasundara C T, Yang R Y, Guo B Y, et al. Effect of slurry properties on particle motion in IsaMills. Miner Eng, 2009, 22(11): 886 doi: 10.1016/j.mineng.2009.04.009
    [43] Cho H, Lee H, Lee Y. Some breakage characteristics of ultra-fine wet grinding with a centrifugal mill. Int J Miner Process, 2006, 78(4): 250 doi: 10.1016/j.minpro.2005.11.005
    [44] Bradley A A, Lloyd P J D, Stanton K H. The balancing of a centrifugal mill. J South Afr Inst Min Metall, 1983, 83: 229
    [45] Lee H, Cho H, Kwon J. Using the discrete element method to analyze the breakage rate in a centrifugal/vibration mill. Powder Technol, 2010, 198(3): 364 doi: 10.1016/j.powtec.2009.12.001
    [46] Chen Y. Motion Analysis of Medium and Numerical Simulation of Horizontal Centrifugal Barrel Finishing [Dissertation]. Kunming: Kunming University of Science and Technology, 2017

    陳懿. 臥式離心滾磨介質運動分析及數值模擬[學位論文]. 昆明: 昆明理工大學, 2017
    [47] Khanal M, Morrison R. Discrete element method study of abrasion. Miner Eng, 2008, 21(11): 751 doi: 10.1016/j.mineng.2008.06.008
    [48] Antony S J, Kruyt N P. Role of interparticle friction and particle-scale elasticity in the shear-strength mechanism of three-dimensional granular media. Phys Rev E, 2009, 79: art. No. 031308 doi: 10.1103/PhysRevE.79.031308
    [49] Khanal M, Jayasundara C T. Role of particle stiffness and inter-particle sliding friction in milling of particles. Particuology, 2014, 16: 54 doi: 10.1016/j.partic.2014.04.003
    [50] Cleary P W. Large scale industrial DEM modelling. Eng Comput, 2004, 21(2/3/4): 169 doi: 10.1108/02644400410519730
    [51] Cleary P W. Industrial particle flow modelling using discrete element method. Eng Comput, 2009, 26(6): 698 doi: 10.1108/02644400910975487
    [52] Cleary P W. The effect of particle shape on simple shear flows. Powder Technol, 2008, 179(3): 144 doi: 10.1016/j.powtec.2007.06.018
    [53] Delaney G W, Cleary P W, Morrison R D, et al. Predicting breakage and the evolution of rock size and shape distributions in Ag and SAG mills using DEM. Miner Eng, 2013, 50-51: 132 doi: 10.1016/j.mineng.2013.01.007
    [54] Cleary P W, Morrison R D. Comminution mechanisms, particle shape evolution and collision energy partitioning in tumbling mills. Miner Eng, 2016, 86: 75 doi: 10.1016/j.mineng.2015.12.006
    [55] Cleary P W, Delaney G W, Sinnott M D, et al. Inclusion of incremental damage breakage of particles and slurry rheology into a particle scale multiphase model of a SAG mill. Miner Eng, 2018, 128: 92 doi: 10.1016/j.mineng.2018.08.026
    [56] Cleary P W, Owen P. Effect of particle shape on structure of the charge and nature of energy utilisation in a SAG mill. Miner Eng, 2019, 132: 48 doi: 10.1016/j.mineng.2018.12.006
    [57] Du Q. Wearing analysis of shell liner in large SAG mill based on DEM. Min Process Equip, 2015, 43(1): 62

    杜強. 基于離散元的大型半自磨機筒體襯板磨損分析. 礦山機械, 2015, 43(1):62
    [58] Cai G P, Qi B C, Xiao X H, et al. Numerical simulation and experiment research of grinding efficiency of SAG. J Henan Polytech Univ Nat Sci, 2017, 36(2): 89

    蔡改貧, 祁步春, 肖賢煌, 等. 半自磨機磨礦效果的數值模擬及實驗研究. 河南理工大學學報(自然科學版), 2017, 36(2):89
  • 加載中
圖(1) / 表(1)
計量
  • 文章訪問數:  816
  • HTML全文瀏覽量:  465
  • PDF下載量:  187
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-11-05
  • 網絡出版日期:  2021-03-03
  • 刊出日期:  2022-01-08

目錄

    /

    返回文章
    返回