<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

鐵尾礦兩步法制備多級孔ZSM-5分子篩

張鵬 李素芹 郭鵬輝 趙鑫 趙澤坤

張鵬, 李素芹, 郭鵬輝, 趙鑫, 趙澤坤. 鐵尾礦兩步法制備多級孔ZSM-5分子篩[J]. 工程科學學報, 2022, 44(5): 894-899. doi: 10.13374/j.issn2095-9389.2020.11.05.002
引用本文: 張鵬, 李素芹, 郭鵬輝, 趙鑫, 趙澤坤. 鐵尾礦兩步法制備多級孔ZSM-5分子篩[J]. 工程科學學報, 2022, 44(5): 894-899. doi: 10.13374/j.issn2095-9389.2020.11.05.002
ZHANG Peng, LI Su-qin, GUO Peng-hui, ZHAO Xin, ZHAO Ze-kun. Synthesis of a hierarchical ZSM-5 zeolite from iron-ore tailings by a two-step method[J]. Chinese Journal of Engineering, 2022, 44(5): 894-899. doi: 10.13374/j.issn2095-9389.2020.11.05.002
Citation: ZHANG Peng, LI Su-qin, GUO Peng-hui, ZHAO Xin, ZHAO Ze-kun. Synthesis of a hierarchical ZSM-5 zeolite from iron-ore tailings by a two-step method[J]. Chinese Journal of Engineering, 2022, 44(5): 894-899. doi: 10.13374/j.issn2095-9389.2020.11.05.002

鐵尾礦兩步法制備多級孔ZSM-5分子篩

doi: 10.13374/j.issn2095-9389.2020.11.05.002
基金項目: 國家自然科學基金資助項目(51874039)
詳細信息
    通訊作者:

    E-mail:lisuqin@metall.ustb.edu.cn

  • 中圖分類號: TQ17

Synthesis of a hierarchical ZSM-5 zeolite from iron-ore tailings by a two-step method

More Information
  • 摘要: 以鐵尾礦為原料替代純化學試劑,采用兩步法制備含有介孔–微孔復合孔的多級孔ZSM-5分子篩。首先在介孔模板劑(CTAB)作用下合成介孔分子篩(MCM-41),然后通過固相轉換法將MCM-41晶化轉變為多級孔ZSM-5分子篩。采用X射線衍射(XRD)、掃描電鏡(SEM)、透射電鏡(TEM)和氮氣吸附脫附測試(BET)等技術對樣品進行表征。實驗結果表明,由于體系中沒有液態水相參與,成功避免了CTAB與微孔結構導向劑(TPABr)在水溶液中相互競爭,從而得到高結晶度的多級孔ZSM-5分子篩。因此,本文為鐵尾礦制備多級孔ZSM-5提供了一種全新方法。

     

  • 圖  1  不同Na2CO3·10H2O/SiO2摩爾比HZSM-5的XRD圖譜(a)和不同堿源合成HZSM-5的XRD圖譜(b)

    Figure  1.  XRD patterns of HZSM-5 with different Na2CO3·10H2O/SiO2 molar ratios (a) and XRD patterns of HZSM-5 with different alkali (b)

    圖  2  不同TPABr/SiO2摩爾比合成HZSM-5的XRD圖譜

    Figure  2.  XRD patterns of HZSM-5 with different TPABr/SiO2 molar ratios

    圖  3  不同晶化時間HZSM-5的XRD圖譜。(a)小角;(b)廣角

    Figure  3.  XRD patterns of the HZSM-5 synthesized at different crystallization time: (a) small angle XRD; (b) wide angle XRD

    圖  4  不同晶化時間HZSM-5的SEM和TEM圖

    Figure  4.  SEM and transmission electron microscopy images of HZSM-5 synthesized at different crystallization times

    圖  5  HZSM-5的氮氣吸附–脫附曲線(a)及BJH孔徑分布(b)

    Figure  5.  Nitrogen adsorption–desorption isotherms (a) and the BJH adsorption pore distributions (b) of HZSM-5

    表  1  IOT化學成分(質量分數)

    Table  1.   Chemical composition of an iron-ore tailing %

    SiO2Fe2O3CaOMgOAl2O3K2ONa2OSO3P2O5Cr2O3
    68.647.673.412.2613.143.640.740.360.160.14
    下載: 導出CSV

    表  2  HZSM-5的物化性質

    Table  2.   Physicochemical properties of the HZSM-5

    SampleBET surface area/
    (m2·g?1)
    Micropore surface area/
    (m2·g?1)
    External surface area/
    (m2·g?1)
    Pore volume/
    (cm3·g?1)
    Average pore width/
    nm
    HZSM-5-0740.920.6893.72
    HZSM-5-6690.280.6423.49
    HZSM-5-12327.01191.25135.760.1972.41
    HZSM-5-18336.51220.03116.480.2042.32
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Yan Q P. Research on development and utilization of iron ore tailings slag powder in my country. Iron Steel Scrap China, 2014(3): 33

    閆啟平. 我國鐵礦尾礦渣粉開發利用之研究. 中國廢鋼鐵, 2014(3):33
    [2] Osinubi K J, Yohanna P, Eberemu A O. Cement modification of tropical black clay using iron ore tailings as admixture. Transp Geotech, 2015, 5: 35 doi: 10.1016/j.trgeo.2015.10.001
    [3] McDonald J E D, Roache S C, Kawatra S K. Repurposing mine tailings: Cold bonding of siliceous iron ore tailings. Miner Metall Process, 2016, 33(1): 47
    [4] Sirkeci A A, Gül A, Bulut G, et al. Recovery of Co, Ni, and Cu from the tailings of divrigi iron ore concentrator. Miner Process Extr Metall Rev, 2006, 27(2): 131 doi: 10.1080/08827500600563343
    [5] Wang C L, Ni W, Zhang S Q, et al. Preparation and properties of autoclaved aerated concrete using coal gangue and iron ore tailings. Constr Build Mater, 2016, 104: 109 doi: 10.1016/j.conbuildmat.2015.12.041
    [6] Jin Y Y, Sun Q, Qi G D, et al. Solvent-free synthesis of silicoaluminophosphate zeolites. Angew Chem Int Ed, 2013, 52(35): 9172 doi: 10.1002/anie.201302672
    [7] Zhang P, Li S Q, Guo P H, et al. Synthesis of ZSM-5 microspheres made of nanocrystals from iron ore tailings by the solid-phase conversion method. Langmuir, 2020, 36(22): 6160 doi: 10.1021/acs.langmuir.0c00570
    [8] Yang G, Deng Y X, Ding H, et al. A facile approach to synthesize MCM-41 mesoporous materials from iron ore tailing: Influence of the synthesis conditions on the structural properties. Appl Clay Sci, 2015, 111: 61 doi: 10.1016/j.clay.2015.04.005
    [9] Liu X F, Zeng S J, Wang R W, et al. Sustainable synthesis of hierarchically porous silicalite-1 zeolite by steam-assisted crystallization of solid raw materials without secondary templates. Chem Res Chin Univ, 2018, 34(3): 350 doi: 10.1007/s40242-018-7400-2
    [10] Guo X, Lin S Y, Qin K, et al. Controllable detemplation of nanozeolites and research of molecular diffusing limitation. Chem J Chin Univ, 2015, 36(4): 713

    郭肖, 林少穎, 秦愷, 等. 納米沸石的模板可控去除及分子擴散限制. 高等學校化學學報, 2015, 36(4):713
    [11] Vyazovkin S. Kinetic concepts of thermally stimulated reactions in solids: A view from a historical perspective. Int Rev Phys Chem, 2000, 19(1): 45 doi: 10.1080/014423500229855
    [12] Mianowski A, Bigda R. The Kissinger law and isokinetic effect: Part II. Experimental analysis. J Therm Anal Calorim, 2004, 75(1): 355 doi: 10.1023/B:JTAN.0000017356.72106.d9
    [13] Zhu Q, Kondo J N, Setoyama T, et al. Activation of hydrocarbons on acidic zeolites: Superior selectivity of methylation of ethene with methanol to propene on weakly acidic catalysts. Chem Commun (Camb), 2008(41): 5164 doi: 10.1039/b809718f
    [14] Ding J, Fan S Y, Chen P J, et al. Vapor-phase transport synthesis of microfibrous-structured SS-fiber@ZSM-5 catalyst with improved selectivity and stability for methanol-to-propylene. Catal Sci Technol, 2017, 7(10): 2087 doi: 10.1039/C7CY00283A
    [15] Wodarz S, Slaby N A, Zimmermann M C, et al. Shaped hierarchical H-ZSM-5 catalysts for the conversion of dimethyl ether to gasoline. Ind Eng Chem Res, 2020, 59(40): 17689 doi: 10.1021/acs.iecr.9b06256
    [16] Jiang X, Nie X W, Guo X W, et al. Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis. Chem Rev, 2020, 120(15): 7984 doi: 10.1021/acs.chemrev.9b00723
    [17] Wu Z J, Zhao K Q, Zhang Y, et al. Synthesis and consequence of aggregated nanosized ZSM-5 zeolite crystals for methanol to propylene reaction. Ind Eng Chem Res, 2019, 58(25): 10737 doi: 10.1021/acs.iecr.9b00502
    [18] Zhang K, Fernandez S, O’Brien J T, et al. Organotemplate-free synthesis of hierarchical beta zeolites. Catal Today, 2018, 316: 26 doi: 10.1016/j.cattod.2017.11.033
    [19] Emdadi L, Tran D T, Schulman E, et al. Synthesis of hierarchical lamellar MFI zeolites with sequential intergrowth influenced by synthetic gel composition. Microporous Mesoporous Mater, 2019, 275: 31 doi: 10.1016/j.micromeso.2018.08.007
    [20] Zhang Q, Hu S, Zhang L L, et al. Facile fabrication of mesopore-containing ZSM-5 zeolite from spent zeolite catalyst for methanol to propylene reaction. Green Chem, 2014, 16(1): 77 doi: 10.1039/C3GC41327F
    [21] Ge T, Hua Z, He X, et al. On the mesoporogen-free synthesis of single-crystalline hierarchically structured ZSM-5 zeolites in a quasi-solid-state system. Chemistry, 2016, 22(23): 7895 doi: 10.1002/chem.201504813
    [22] Li C L, Wang Y Q, Shi B F, et al. Synthesis of hierarchical MFI zeolite microspheres with stacking nanocrystals. Microporous Mesoporous Mater, 2009, 117(1-2): 104 doi: 10.1016/j.micromeso.2008.06.017
    [23] Feng A H, Yu Y, Mi L, et al. Synthesis and characterization of hierarchical Y zeolites using NH4HF2 as dealumination agent. Microporous Mesoporous Mater, 2019, 280: 211 doi: 10.1016/j.micromeso.2019.01.039
    [24] Yue M B, Sun L B, Zhuang T T, et al. Directly transforming as-synthesized MCM-41 to mesoporous MFI zeolite. J Mater Chem, 2008, 18(17): 2044 doi: 10.1039/b717634a
    [25] Chen H R, Zhou X X, Shi J L. Research progress on hierarchically porous zeolites: Structural control, synthesis and catalytic applications. J Inorg Mater, 2018, 33(2): 113 doi: 10.15541/jim20170255

    陳航榕, 周曉霞, 施劍林. 多級孔沸石的孔結構調控合成及其催化應用研究進展. 無機材料學報, 2018, 33(2):113 doi: 10.15541/jim20170255
    [26] Zhou J, Hua Z L, Liu Z C, et al. Direct synthetic strategy of mesoporous ZSM-5 zeolites by using conventional block copolymer templates and the improved catalytic properties. ACS Catal, 2011, 1(4): 287 doi: 10.1021/cs1000976
    [27] Xue T, Li S S, Wu H H, et al. Eco-friendly and cost-effective synthesis of ZSM-5 aggregates with hierarchical porosity. Ind Eng Chem Res, 2017, 56(46): 13535 doi: 10.1021/acs.iecr.7b02551
    [28] Farinmade A, Ajumobi O, Yu L, et al. A one-step facile encapsulation of zeolite microcrystallites in ordered mesoporous microspheres. Ind Eng Chem Res, 2020, 59(31): 13923 doi: 10.1021/acs.iecr.0c02054
  • 加載中
圖(5) / 表(2)
計量
  • 文章訪問數:  776
  • HTML全文瀏覽量:  443
  • PDF下載量:  77
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-11-05
  • 網絡出版日期:  2021-01-20
  • 刊出日期:  2022-05-25

目錄

    /

    返回文章
    返回