<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

鋰離子電池富鋰正極材料的包覆改性研究進展

楊溢 何亞鵬 張盼盼 郭忠誠 黃惠

楊溢, 何亞鵬, 張盼盼, 郭忠誠, 黃惠. 鋰離子電池富鋰正極材料的包覆改性研究進展[J]. 工程科學學報, 2022, 44(3): 367-379. doi: 10.13374/j.issn2095-9389.2020.11.04.003
引用本文: 楊溢, 何亞鵬, 張盼盼, 郭忠誠, 黃惠. 鋰離子電池富鋰正極材料的包覆改性研究進展[J]. 工程科學學報, 2022, 44(3): 367-379. doi: 10.13374/j.issn2095-9389.2020.11.04.003
YANG Yi, HE Ya-peng, ZHANG Pan-pan, GUO Zhong-cheng, HANG Hui. Research progress on coating modification of lithium-rich cathode materials for lithium-ion batteries[J]. Chinese Journal of Engineering, 2022, 44(3): 367-379. doi: 10.13374/j.issn2095-9389.2020.11.04.003
Citation: YANG Yi, HE Ya-peng, ZHANG Pan-pan, GUO Zhong-cheng, HANG Hui. Research progress on coating modification of lithium-rich cathode materials for lithium-ion batteries[J]. Chinese Journal of Engineering, 2022, 44(3): 367-379. doi: 10.13374/j.issn2095-9389.2020.11.04.003

鋰離子電池富鋰正極材料的包覆改性研究進展

doi: 10.13374/j.issn2095-9389.2020.11.04.003
基金項目: 國家自然科學基金資助項目(52064028,22002054,51504111);中國博士后科學基金資助項目(2018M633418)
詳細信息
    通訊作者:

    E-mail: huihuanghan@kmust.edu.cn

  • 中圖分類號: TM912.9

Research progress on coating modification of lithium-rich cathode materials for lithium-ion batteries

More Information
  • 摘要: 隨著新能源汽車及儲能行業的快速發展,傳統正極材料難以滿足人們對電池高能量、高密度鋰電池的要求。富含Li和Mn的層狀氧化物xLi2MnO3·(1–x)LiMO2 (M=Ni,Mn,Co),其高比容量可超過250 mA·h·g–1,有希望成為下一代鋰離子電池最理想的正極材料。但是,富鋰材料仍存在首次循環不可逆容量高、循環性能差和倍率容量低等問題,為解決這些問題,本文闡述了富鋰正極材料的結構和電化學反應之間的構效關系,討論了金屬氧化物、金屬氟化物、碳、導電聚合物和鋰離子導體等涂層材料對富鋰正極材料電化學性能的影響規律及作用機理,同時還對以上涂層在富鋰正極材料中應用的優缺點進行了總結。最后,對鋰離子電池富鋰正極材料的包覆改性的未來發展發現作出展望。

     

  • 圖  1  氧化鋁包覆富鋰納米管的合成路線示意圖[52]

    Figure  1.  Schematic of the route for synthesizing Al2O3-coating Li-rich nanotubes[52]

    圖  2  FATO包覆Li1.2Mn0.54Ni0.13Co0.13O2顆粒中的氧空位機制示意圖[53]

    Figure  2.  Schematic of oxygen vacancies mechanism in FATO-coated Li1.2Mn0.54Ni0.13Co0.13O2 particles[53]

    圖  3  LMNCAF合成的示意圖[54]

    Figure  3.  Schematic of the synthesis of LMNCAF[54]

    圖  4  (a)原始LNMO及不同比例CoF2改性材料的循環性能[57];(b)充電狀態(4.8 V)下原始和1% MgF2修飾富鋰電極的熱重曲線[55]

    Figure  4.  (a) Cycling properties of bare LNMO and modified materials with different proportions of CoF2[57]; (b) DSC tracking of the original and 1% MgF2–coated lithium-rich electrode under charged state (4.8 V)[55]

    圖  5  HRTEM圖像和電子衍射圖譜。(a)由混合尖晶石和層狀結構組成的顆粒表面HRTEM圖像;(b)混合尖晶石結構的電子衍射圖譜;(c)層狀結構的電子衍射圖譜;(d)混合尖晶石和層狀結構合并后的電子衍射圖譜;(e)混合尖晶石結構的晶向指數;(f)層狀結構的晶向指數;(g)混合尖晶石和層狀結構合并后的晶向指數[68]

    Figure  5.  HRTEM images and electron diffraction patterns: (a) HRTEM image of particle surface composed of mixed spinel and layered structure; (b) electron diffraction pattern of mixed spinel structure; (c) electron diffraction pattern of layered structure; (d) electron diffraction pattern of mixed spinel and layered structures combined; (e) orientation index of mixed spinel structure; (f) orientation index of layered structure; (g) orientation index of mixed spinel and layered structures combined[68]

    圖  6  生物質葡萄糖作為碳源包覆富鋰材料示意圖[71]

    Figure  6.  Schematic of biomass glucose as carbon source-coated lithium-rich material[71]

    圖  7  (a)PI–LNMCO-450的TEM圖像;LNMCO和PI–LNMCO在2.0~4.8 V電壓范圍內的循環行為(b)和倍率性能(c) [74]

    Figure  7.  (a) TEM images of PI–LNMCO-450 samples; cyclic behaviors (b) and rate performances (c) of LNMCO and PI–LNMCO in the voltage range of 2.0–4.8 V[74]

    圖  8  (a)LiPPA–PPy的濕法涂裝過程;原始富鋰材料和LiPPA–PPy改性材料的循環性能(b)和倍率性能(c)[75]

    Figure  8.  (a) Wet-coating process of LiPPA–PPy; The cyclic behaviors (b) and rate performances (c) of pristine Li-rich materials and LiPPA–PPy modified materials [75]

    圖  9  (a)Li1.2Ni0.2Mn0.6O2/PEDOT:PSS樣品合成示意圖;(b)PEDOT:PSS結構[76]

    Figure  9.  (a) Synthesis of Li1.2Ni0.2Mn0.6O2/PEDOT:PSS samples; (b) structure of PEDOT:PSS [76]

    圖  10  (a)LiCoPO4修飾Li1.2Ni0.18Mn0.59Co0.03O2的TEM圖像;在400 °C(b)和500 °C(c)下煅燒制備的Li–Mn–PO4涂層樣品的TEM圖像[78];在400 °C和500 °C下煅燒制備的Li–Mn–PO4涂層樣品的循環性能(d)和倍率性能(e) [79]

    Figure  10.  (a) TEM images of the LiCoPO4-modified Li1.2Ni0.18Mn0.59Co0.03O2; TEM images of the Li–Mn–PO4-coated samples after calcination at 400 °C (b) and 500 °C (c) [78]; cycle performances (d) and rate capabilities (e) of the as-prepared Li(Li0.17Ni0.25Mn0.58)O2 and Li–Mn–PO4-coated samples after calcination at 400 and 500 °C[79]

    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Goodenough J B. Energy storage materials: A perspective. Energy Storage Mater, 2015, 1: 158 doi: 10.1016/j.ensm.2015.07.001
    [2] Kumar S, Nayak P K, Hariharan K S, et al. Temperature and potential dependence electrochemical impedance studies of LiMn2O4. J Appl Electrochem, 2014, 44(1): 61 doi: 10.1007/s10800-013-0601-y
    [3] Thomas M G S R, David W I F, Goodenough J B, et al. Synthesis and structural characterization of the normal spinel Li[Ni2]O4. Mater Res Bull, 1985, 20(10): 1137 doi: 10.1016/0025-5408(85)90087-X
    [4] Mizushima K, Jones P C, Wiseman P J, et al. LixCoO2 (0<x<?1): A new cathode material for batteries of high energy density. Mater Res Bull, 1980, 15(6): 783 doi: 10.1016/0025-5408(80)90012-4
    [5] Padhi A K, Nanjundaswamy K S, Goodenough J B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc, 1997, 144(4): 1188 doi: 10.1149/1.1837571
    [6] Numata K, Sakaki C, Yamanaka S. Synthesis of solid solutions in a system of LiCoO2–Li2MnO3 for cathode materials of secondary lithium batteries. Chem Lett, 1997, 26(8): 725 doi: 10.1246/cl.1997.725
    [7] Numata K, Sakaki C, Yamanaka S. Synthesis and characterization of layer structured solid solutions in the system of LiCoO2–Li2MnO3. Solid State Ionics, 1999, 117(3-4): 257 doi: 10.1016/S0167-2738(98)00417-2
    [8] Lu Z H, MacNeil D D, Dahn J R. Layered cathode materials Li[NixLi(1/3–2x/3)Mn(2/3–x/3)]O2 for lithium-ion batteries. Electrochem Solid-State Lett, 2001, 4(11): A191 doi: 10.1149/1.1407994
    [9] Thackeray M M, Johnson C S, Vaughey J T, et al. Advances in manganese-oxide ‘composite’ electrodes for lithium-ion batteries. J Mater Chem, 2005, 15(23): 2257 doi: 10.1039/b417616m
    [10] Thackeray M M, Kang S H, Johnson C S, et al. Li2MnO3-stabilized LiMO2 (M = Mn, Ni, Co) electrodes for lithium-ion batteries. J Mater Chem, 2007, 17(30): 3112 doi: 10.1039/b702425h
    [11] Johnson C S, Li N C, Lefief C, et al. Anomalous capacity and cycling stability of xLi2MnO3·(1?x)LiMO2 electrodes (M = Mn, Ni, Co) in lithium batteries at 50℃. Electrochem Commun, 2007, 9(4): 787 doi: 10.1016/j.elecom.2006.11.006
    [12] Wang Z, Yin Y P, Ren Y, et al. High performance lithium-manganese-rich cathode material with reduced impurities. Nano Energy, 2017, 31: 247 doi: 10.1016/j.nanoen.2016.10.014
    [13] Chong S K, Wu Y F, Chen Y Z, et al. A strategy of constructing spherical core-shell structure of Li1.2Ni0.2Mn0.6O2@Li1.2Ni0.4Mn0.4O2 cathode material for high-performance lithium-ion batteries. J Power Sources, 2017, 356: 153
    [14] Nayak P K, Erickson E M, Schipper F, et al. Review on challenges and recent advances in the electrochemical performance of high capacity Li- and Mn-rich cathode materials for Li-ion batteries. Adv Energy Mater, 2018, 8(8): 1702397 doi: 10.1002/aenm.201702397
    [15] Zuo Y, Li B, Jiang N, et al. A high-capacity O2–Type Li-rich cathode material with a single-layer Li2MnO3 superstructure. Adv Mater, 2018, 30(16): e1707255 doi: 10.1002/adma.201707255
    [16] Zheng J M, Yan P F, Estevez L, et al. Effect of calcination temperature on the electrochemical properties of nickel-rich LiNi0.76Mn0.14Co0.10O2 cathodes for lithium-ion batteries. Nano Energy, 2018, 49: 538
    [17] Assat G, Tarascon J M. Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries. Nat Energy, 2018, 3(5): 373 doi: 10.1038/s41560-018-0097-0
    [18] Yang C, Gong Z L, Zhao W G, et al. Synthesis and electrochemical performance of lithium rich cathode materials xLi3NbO4·(1–x)LiMO2 (M=Mn, Co; 0<x<1) for Li-ion batteries. Acta Chim Sinica, 2017, 75(2): 212 doi: 10.6023/A16050240
    [19] Gauthier M, Carney T J, Grimaud A, et al. Electrode-electrolyte interface in Li-ion batteries: Current understanding and new insights. J Phys Chem Lett, 2015, 6(22): 4653 doi: 10.1021/acs.jpclett.5b01727
    [20] Yan P F, Nie A M, Zheng J M, et al. Evolution of lattice structure and chemical composition of the surface reconstruction layer in Li1.2Ni0.2Mn0.6O2 cathode material for lithium ion batteries. Nano Lett, 2015, 15(1): 514
    [21] Xu B, Fell C R, Chi M F, et al. Identifying surface structural changes in layered Li-excess nickel manganese oxides in high voltage lithium ion batteries: A joint experimental and theoretical study. Energy Environ Sci, 2011, 4(6): 2223 doi: 10.1039/c1ee01131f
    [22] Oh P, Ko M, Myeong S, et al. A novel surface treatment method and new insight into discharge voltage deterioration for high-performance 0.4Li2MnO3-0.6LiNi1/3Co1/3Mn1/3O2 cathode materials. Adv Energy Mater, 2014, 4(16): 1400631
    [23] Pang S L, Xu K J, Wang Y G, et al. Enhanced electrochemical performance of Li-rich layered cathode materials via chemical activation of Li2MnO3 component and formation of spinel/carbon coating layer. J Power Sources, 2017, 365: 68 doi: 10.1016/j.jpowsour.2017.08.077
    [24] Chen D R, Zheng F, Li L, et al. Effect of Li3PO4 coating of layered lithium-rich oxide on electrochemical performance. J Power Sources, 2017, 341: 147 doi: 10.1016/j.jpowsour.2016.11.020
    [25] Zheng F H, Ou X, Pan Q C, et al. Nanoscale gadolinium doped ceria (GDC) surface modification of Li-rich layered oxide as a high performance cathode material for lithium ion batteries. Chem Eng J, 2018, 334: 497 doi: 10.1016/j.cej.2017.10.050
    [26] Wen X F, Liang K, Tian L Y, et al. Al2O3 coating on Li1.256Ni0.198Co0.082Mn0.689O2.25 with spinel-structure interface layer for superior performance lithium ion batteries. Electrochimica Acta, 2018, 260: 549
    [27] Seteni B, Rapulenyane N, Ngila J C, et al. Coating effect of LiFePO4 and Al2O3 on Li1.2Mn0.54Ni0.13Co0.13O2 cathode surface for lithium ion batteries. J Power Sources, 2017, 353: 210
    [28] Wang D D, Zhang X P, Xiao R J, et al. Electrochemical performance of Li-rich Li[Li0.2Mn0.56Ni0.17Co0.07]O2 cathode stabilized by metastable Li2SiO3 surface modification for advanced Li-ion batteries. Electrochimica Acta, 2018, 265: 244
    [29] Yang C C, Liao P C, Wu Y S, et al. Electrochemical performance of Li-rich oxide composite material coated with Li0.75La0.42TiO3 ionic conductor. Appl Surf Sci, 2017, 399: 670
    [30] Yi T F, Li Y M, Li X Y, et al. Enhanced electrochemical property of FePO4-coated LiNi0.5Mn1.5O4 as cathode materials for Li-ion battery. Sci Bull, 2017, 62(14): 1004
    [31] Xiao B W, Wang B Q, Liu J, et al. Highly stable Li1.2Mn0.54Co0.13Ni0.13O2 enabled by novel atomic layer deposited AlPO4 coating. Nano Energy, 2017, 34: 120
    [32] Shi S J, Tu J P, Zhang Y J, et al. Effect of Sm2O3 modification on Li[Li0.2Mn0.56Ni0.16Co0.08]O2 cathode material for lithium ion batteries. Electrochimica Acta, 2013, 108: 441
    [33] Zhao Y J, Lv Z, Xu T, et al. SiO2 coated Li1.2Ni0.2Mn0.6O2 as cathode materials with rate performance, HF scavenging and thermal properties for Li-ion batteries. J Alloys Compd, 2017, 715: 105
    [34] He L, Xu J M, Han T, et al. SmPO4-coated Li1.2Mn0.54Ni0.13Co0.13O2 as a cathode material with enhanced cycling stability for lithium ion batteries. Ceram Int, 2017, 43(6): 5267
    [35] Pan W, Peng W J, Yan G C, et al. Suppressing the voltage decay and enhancing the electrochemical performance of Li1.2Mn0.54Co0.13Ni0.13O2 by multifunctional Nb2O5 Coating. Energy Technol, 2018, 6(11): 2139
    [36] Meng H X, Li L Q, Liu J Q, et al. Surface modification of Li-rich layered Li[Li0.17Ni0.17Co0.10Mn0.56]O2 oxide with LiV3O8 as a cathode material for Li-ion batteries. J Alloys Compd, 2017, 690: 256
    [37] Zuo C, Du Y H, Zhang P, et al. Electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 lithium-enriched cathode materials coated with Al2O3. Chin J Mater Res, 2020, 34(8): 621

    左成, 杜云慧, 張鵬, 等. Al2O3包覆Li1.2Mn0.54Ni0.13Co0.13O2富鋰正極材料的電化學性能. 材料研究學報, 2020, 34(8):621
    [38] Shi S J, Tu J P, Tang Y Y, et al. Enhanced cycling stability of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 by surface modification of MgO with melting impregnation method. Electrochimica Acta, 2013, 88: 671
    [39] Liu S, Wang Z, Huang Y, et al. Fluorine doping and Al2O3 coating Co-modified Li[Li0.20Ni0.133Co0.133Mn0.534]O2 as high performance cathode material for lithium-ion batteries. J Alloys Compd, 2018, 731: 636
    [40] Su N, Lyu Y C, Gu R, et al. Al2O3 coated Li1.2Ni0.2Mn0.2Ru0.4O2 as cathode material for Li-ion batteries. J Alloys Compd, 2018, 741: 398
    [41] Dannehl N, Steinmüller S O, Szabó D, et al. High-resolution surface analysis on aluminum oxide-coated Li1.2Mn0.55Ni0.15Co0.1O2 with improved capacity retention. ACS Appl Mater Interfaces, 2018, 10(49): 43131
    [42] Kobayashi G, Irii Y, Matsumoto F, et al. Improving cycling performance of Li-rich layered cathode materials through combination of Al2O3-based surface modification and stepwise precycling. J Power Sources, 2016, 303: 250 doi: 10.1016/j.jpowsour.2015.11.014
    [43] Wang Z Y, Liu E Z, Guo L C, et al. Cycle performance improvement of Li-rich layered cathode material Li[Li0.2Mn0.54Ni0.13Co0.13]O2 by ZrO2 coating. Surf Coat Technol, 2013, 235: 570
    [44] Kong J Z, Zhai H F, Qian X, et al. Improved electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material coated with ultrathin ZnO. J Alloys Compd, 2017, 694: 848
    [45] ?ahan H, G?ktepe H, Patat ?, et al. Effect of the Cr2O3 coating on electrochemical properties of spinel LiMn2O4 as a cathode material for lithium battery applications. Solid State Ionics, 2010, 181(31-32): 1437 doi: 10.1016/j.ssi.2010.08.008
    [46] Chen C, Geng T F, Du C Y, et al. Oxygen vacancies in SnO2 surface coating to enhance the activation of layered Li-Rich Li1.2Mn0.54Ni0.13Co0.13O2 cathode material for Li-ion batteries. J Power Sources, 2016, 331: 91
    [47] Yuan W, Zhang H Z, Liu Q, et al. Surface modification of Li(Li0.17Ni0.2Co0.05Mn0.58)O2 with CeO2 as cathode material for Li-ion batteries. Electrochimica Acta, 2014, 135: 199
    [48] Zheng J M, Li J, Zhang Z R, et al. The effects of TiO2 coating on the electrochemical performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material for lithium-ion battery. Solid State Ionics, 2008, 179(27-32): 1794
    [49] Kou H R, Li X F, Liu W, et al. Atomic layer deposition of ultrathin MgO coating onto LiNi0.6Co0.2Mn0.2O2. J Univ Electron Sci Technol China, 2020, 49(1): 3

    寇華日, 李喜飛, 劉文, 等. 原子層沉積MgO薄膜改性LiNi0.6Co0.2Mn0.2O2. 電子科技大學學報, 2020, 49(1):3
    [50] Su Y F, Zhang Q Y, Chen L, et al. Effects of ZrO2 coating on Ni-rich Li Ni0.8Co0.1Mn0.1O2 cathodes with enhanced cycle stabilities. Acta Phys Chimica Sin, 2021, 37(3): 110

    蘇岳鋒, 張其雨, 陳來, 等. ZrO2包覆高鎳LiNi0.8Co0.1Mn0.1O2正極材料提高其循環穩定性的作用機理. 物理化學學報, 2021, 37(3):110
    [51] Gan Y P, Lin P P, Huang H, et al. Effects of surfactants on Al2O3-modified Li-rich layered metal oxide cathode materials for advanced Li-ion batteries. Acta Phys Chimica Sin, 2017, 33(6): 1189 doi: 10.3866/PKU.WHXB201702221

    甘永平, 林沛沛, 黃輝, 等. 表面活性劑對氧化鋁修飾富鋰錳基正極材料的影響. 物理化學學報, 2017, 33(6):1189 doi: 10.3866/PKU.WHXB201702221
    [52] Chen Y W, Wang X C, Zhang J J, et al. Al2O3-coated Li1.2Mn0.54Ni0.13Co0.13O2 nanotubes as cathode materials for high-performance lithium-ion batteries. RSC Adv, 2019, 9(4): 2172
    [53] Rastgoo-Deylami M, Javanbakht M, Omidvar H. Enhanced performance of layered Li1.2Mn0.54Ni0.13Co0.13O2 cathode material in Li-ion batteries using nanoscale surface coating with fluorine-doped anatase TiO2. Solid State Ionics, 2019, 331: 74
    [54] Pang S L, Wang Y G, Chen T, et al. The effect of AlF3 modification on the physicochemical and electrochemical properties of Li-rich layered oxide. Ceram Int, 2016, 42(4): 5397 doi: 10.1016/j.ceramint.2015.12.076
    [55] Sun S W, Wan N, Wu Q, et al. Surface-modified Li[Li0.2Ni0.17Co0.07Mn0.56]O2 nanoparticles with MgF2 as cathode for Li-ion battery. Solid State Ionics, 2015, 278: 85
    [56] Zhang X P, Yang Y, Sun S W, et al. Multifunctional ZrF4 nanocoating for improving lithium storage performances in layered Li[Li0.2Ni0.17Co0.07Mn0.56]O2. Solid State Ionics, 2016, 284: 7
    [57] Chong S K, Chen Y Z, Yan W W, et al. Suppressing capacity fading and voltage decay of Li-rich layered cathode material by a surface nano-protective layer of CoF2 for lithium-ion batteries. J Power Sources, 2016, 332: 230 doi: 10.1016/j.jpowsour.2016.09.028
    [58] Liu X Y, Liu J, Huang T, et al. CaF2–coated Li1.2Mn0.54Ni0.13Co0.13O2 as cathode materials for Li-ion batteries. Electrochimica Acta, 2013, 109: 52
    [59] Shapira A, Tiurin O, Solomatin N, et al. Robust AlF3 atomic layer deposition protective coating on LiMn1.5Ni0.5O4 particles: An advanced Li-ion battery cathode material powder. ACS Appl Energy Mater 2018, 1(12): 6809
    [60] Abdel-Ghany A, El-Tawil R S, Hashem A M, et al. Improved electrochemical performance of LiNi0.5Mn0.5O2 by Li-enrichment and AlF3 coating. Materialia, 2019, 5: 100207
    [61] Buchberger I, Seidlmayer S, Pokharel A, et al. Aging analysis of graphite/LiNi1/3Mn1/3Co1/3O2Cells using XRD, PGAA, and AC impedance. J Electrochem Soc, 2015, 162(14): A2737 doi: 10.1149/2.0721514jes
    [62] Zheng J M, Zhang Z R, Wu X B, et al. The effects of AlF3 coating on the performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material for lithium-ion battery. Meet Abstr, 2008, 155(10): A775
    [63] Niu B B, Li J L, Liu Y Y, et al. Re-understanding the function mechanism of surface coating: Modified Li-rich layered Li1.2Mn0.54Ni0.13Co0.13O2 cathodes with YF3 for high performance lithium-ions batteries. Ceram Int, 2019, 45(9): 12484
    [64] Jiang K C, Wu X L, Yin Y X, et al. Superior hybrid cathode material containing lithium-excess layered material and graphene for lithium-ion batteries. ACS Appl Mater Interfaces, 2012, 4(9): 4858 doi: 10.1021/am301202a
    [65] Song B H, Lai M O, Liu Z W, et al. Graphene-based surface modification on layered Li-rich cathode for high-performance Li-ion batteries. J Mater Chem A, 2013, 1(34): 9954 doi: 10.1039/c3ta11580a
    [66] Shi S J, Tu J P, Mai Y J, et al. Effect of carbon coating on electrochemical performance of Li1.048Mn0.381Ni0.286Co0.286O2 cathode material for lithium-ion batteries. Electrochimica Acta, 2012, 63: 112
    [67] Liu J, Wang Q Y, Reeja-Jayan B, et al. Carbon-coated high capacity layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathodes. Electrochem Commun, 2010, 12(6): 750
    [68] Song B H, Zhou C F, Chen Y, et al. Role of carbon coating in improving electrochemical performance of Li-rich Li(Li0.2Mn0.54Ni0.13Co0.13)O2 cathode. RSC Adv, 2014, 4(83): 44244
    [69] Ma D, Zhang P, Li Y, et al. Li1.2Mn0.54Ni0.13Co0.13O2–Encapsulated carbon nanofiber network cathodes with improved stability and rate capability for Li-ion batteries. Sci Rep, 2015, 5: 11257
    [70] Yang S Y, Huang G, Hu S J, et al. Improved electrochemical performance of the Li1.2Ni0.13Co0.13Mn0.54O2 wired by CNT networks for lithium-ion batteries. Mater Lett, 2014, 118: 8
    [71] Lu D, Chen Y F, Zheng C M, et al. In-situ generate spinel phase on a glucose-derived carbon-coated lithium-rich layered oxide cathode materials and its improved electrochemical performance. Ionics, 2020, 26(5): 2177 doi: 10.1007/s11581-019-03342-5
    [72] Fu X Y, Wang J Q, Zhang L L, et al. Enhanced electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 prepared by using activated carbon as template and carbon source. Ionics, 2020, 26(9): 4423
    [73] Wang D, Wang X Y, Yang X K, et al. Polyaniline modification and performance enhancement of lithium-rich cathode material based on layered-spinel hybrid structure. J Power Sources, 2015, 293: 89 doi: 10.1016/j.jpowsour.2015.05.058
    [74] Zhang J, Lu Q W, Fang J H, et al. Polyimide encapsulated lithium-rich cathode material for high voltage lithium-ion battery. ACS Appl Mater Interfaces, 2014, 6(20): 17965 doi: 10.1021/am504796n
    [75] Mu K C, Tao Y, Peng Z D, et al. Surface architecture modification of high capacity Li1.2Ni0.2Mn0.6O2 with synergistic conductive polymers LiPPA and PPy for lithium ion batteries. Appl Surf Sci, 2019, 495: 143503
    [76] Wu F, Liu J R, Li L, et al. Surface modification of Li-rich cathode materials for lithium-ion batteries with a PEDOT: PSS conducting polymer. ACS Appl Mater Interfaces, 2016, 8(35): 23095 doi: 10.1021/acsami.6b07431
    [77] Liu J D, Zhang Y D, Liu J X, et al. In-situ Li3PO4 coating of Li-rich Mn-based cathode materials for lithium-ion batteries. Acta Chimica Sin, 2020, 78(12): 1426 doi: 10.6023/A20070330

    劉九鼎, 張宇棟, 劉俊祥, 等. 磷酸鋰原位包覆富鋰錳基鋰離子電池正極材料. 化學學報, 2020, 78(12):1426 doi: 10.6023/A20070330
    [78] Liu B, Zhang Q, He S C, et al. Improved electrochemical properties of Li1.2Ni0.18Mn0.59Co0.03O2 by surface modification with LiCoPO4. Electrochimica Acta, 2011, 56(19): 6748
    [79] Qiao Q Q, Zhang H Z, Li G R, et al. Surface modification of Li-rich layered Li(Li0.17Ni0.25Mn0.58)O2 oxide with Li–Mn–PO4 as the cathode for lithium-ion batteries. J Mater Chem A, 2013, 1(17): 5262
    [80] Xu C S, Yu H T, Guo C F, et al. Surface modification of Li1.2Mn0.54Ni0.13Co0.13O2 via an ionic conductive LiV3O8 as a cathode material for Li-ion batteries. Ionics, 2019, 25(10): 4567
  • 加載中
圖(10)
計量
  • 文章訪問數:  1929
  • HTML全文瀏覽量:  710
  • PDF下載量:  198
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-11-03
  • 網絡出版日期:  2021-02-01
  • 刊出日期:  2022-01-08

目錄

    /

    返回文章
    返回