Photoelectrocatalytic oxidation of methane over three-dimensional ZnO/CdS/NiFe layered double hydroxide
-
摘要: 將甲烷以低能耗的方式直接轉化為甲醇等高附加值的化學品一直是可持續化工產業的重要目標和重大挑戰。本文制備了三維(3D)ZnO/CdS/NiFe層狀雙金屬氫氧化物(LDH)核/殼/分層納米線陣列(NWAs)結構材料并將其用于室溫、模擬陽光照射下甲烷的光電催化氧化。結果表明3D ZnO/CdS/NiFe-LDH具有優異的光電化學性能及催化活性,甲烷氣氛下的光電流密度達到了6.57 mA·cm?2(0.9 V vs RHE),其催化甲烷生成甲醇及甲酸產量分別是純ZnO的5.0和6.3倍,兩種主要產物的總法拉第效率達到54.87%。CdS 納米顆粒(NPs)的沉積顯著提升了復合物對可見光的吸收,促進了光生載流子的分離。而具有三維多孔結構的NiFe-LDH納米片的引入改善了甲烷氧化表面反應動力學,起到了優異的助催化作用;并且有效抑制了O2?-的產生,防止O2?-進一步將甲醇及甲酸氧化為CO2,提高了甲醇及甲酸的選擇性。最后,提出了三維ZnO/CdS/NiFe-LDH復合材料光電催化甲烷轉化為甲醇及甲酸的機理,為甲烷低能耗轉化為高價值化學品提供了新思路。Abstract: The direct conversion of methane into methanol and other high value-added chemicals with low-energy consumption has always been an important goal and a major challenge for the sustainable chemical industry. In this paper, a three-dimensional (3D) ZnO/CdS/NiFe layered double hydroxide (LDH) shell/core/hierarchical nanowire arrays (NWAs) structure material was fabricated and utilized for photoelectrocatalytic oxidation of methane at room temperature under simulated sunlight. Results show that the ZnO/CdS/NiFe-LDH photoanode exhibites excellent photoelectrochemical performance and catalytic activity. The photocurrent density under the methane atmosphere reached 6.57 mA·cm?2 at 0.9 V (vs RHE). Yields of methane oxidation products, which mainly are methanol (CH3OH) and formic acid (HCOOH), catalyzed by the synthesized ZnO/CdS/NiFe-LDH composite are 5.0 and 6.3 times those of pure ZnO, respectively. The total Faraday efficiency of the two main products reach 54.87%. The deposition of CdS nanoparticles (NPs) significantly facilitates the absorption of visible light and promotes the separation of photo-generated carriers. The introduction of NiFe-LDH nanosheets with a three-dimensional porous structure improves the surface reaction kinetics of methane oxidation, acting as an excellent co-catalyst. It also effectively inhibites the production of O2?-, preventing O2?- from further oxidizing methanol and formic acid into CO2, which improves the selectivity of methanol and formic acid. Finally, this paper proposed a mechanism of the photoelectrocatalytic oxidation of methane to methanol and formic acid over 3D ZnO/CdS/NiFe-LDH composite material, which provides a new idea for the conversion of methane into high-value chemicals with low-energy consumption.
-
Key words:
- photoelectrocatalysis /
- methane /
- methanol /
- ZnO /
- NiFe-LDH
-
圖 6 ZnO、ZnO/CdS、ZnO/CdS/NiFe-LDH光陽極在持續通入甲烷下的(a)1.1 V(vs RHE)下的計時電流(J?t)曲線;(b)光照條件下與黑暗條件下的電化學阻抗譜;(c)1.1 V(vs RHE)下的電流?時間穩定性曲線
Figure 6. (a) Chronoamperometric J?t curves collected at 1.1 V (vs RHE) under chopped illumination conditions; (b) EIS plots under dark and light illumination; (c) current–time curves for stability measurement collected at 1.1 V (vs RHE) of ZnO, ZnO/CdS, ZnO/CdS/NiFe-LDH photoanodes saturated with methane
圖 7 外加電壓為1.1 V(vs RHE),光照強度為AM 1.5G、100 mA·cm?2,電解液為0.5 mol·L?1 Na2SO4水溶液條件下ZnO、ZnO/CdS、ZnO/CdS/NiFe-LDH光電催化氧化甲烷轉化為甲醇(a)甲酸(b)產量隨時間變化曲線圖以及2.5 h內生成甲醇及甲酸的法拉第效率(c)
Figure 7. Yields of CH3OH (a) and HCOOH (b) in the photoelectrocatalytic oxidation of CH4 with ZnO, ZnO/CdS, and ZnO/CdS/NiFe-LDH catalysts, with a potential of 1.1 V (vs RHE) under simulated sunlight illumination (AM 1.5G, 100 mA·cm?2), and the electrolyte is 0.5 mol·L-1 Na2SO4 aqueous solution; (c) Faradaic efficiencies of CH3OH and HCOOH for ZnO, ZnO/CdS, and ZnO/CdS/NiFe-LDH for a 2.5-h operation
www.77susu.com -
參考文獻
[1] Xu S, Gou Q Y, Hao F, et al. Shale pore structure characteristics of the high and low productivity wells, Jiaoshiba shale gas field, Sichuan Basin, China: Dominated by lithofacies or preservation condition? Mar Petroleum Geol, 2020, 114: 104211 doi: 10.1016/j.marpetgeo.2019.104211 [2] Zeng S, Gu J F, Yang S Y, et al. Comparison of techno-economic performance and environmental impacts between shale gas and coal-based synthetic natural gas (SNG) in China. J Clean Prod, 2019, 215: 544 doi: 10.1016/j.jclepro.2019.01.101 [3] Zhang Q J, He D H, Zhu Q M. Direct partial oxidation of methane to methanol: Reaction zones and role of catalyst location. J Nat Gas Chem, 2008, 17(1): 24 doi: 10.1016/S1003-9953(08)60021-3 [4] Alvarez-Galvan M C, Mota N, Ojeda M, et al. Direct methane conversion routes to chemicals and fuels. Catal Today, 2011, 171(1): 15 doi: 10.1016/j.cattod.2011.02.028 [5] Peerakiatkhajohn P, Yun J H, Chen H, et al. Stable hematite nanosheet photoanodes for enhanced photoelectrochemical water splitting. Adv Mater, 2016, 28(30): 6405 doi: 10.1002/adma.201601525 [6] Jiang C, Moniz S J A, Wang A, et al. Photoelectrochemical devices for solar water splitting-materials and challenges. Chem Soc Rev, 2017, 46(15): 4645 doi: 10.1039/C6CS00306K [7] Liu H M, Wu P, Li H T, et al. Unravelling the effects of layered supports on Ru nanoparticles for enhancing N2 reduction in photocatalytic ammonia synthesis. Appl Catal B:Environ, 2019, 259: 118026 doi: 10.1016/j.apcatb.2019.118026 [8] Ithisuphalap K, Zhang H G, Guo L, et al. Photocatalysis and photoelectrocatalysis methods of nitrogen reduction for sustainable ammonia synthesis. Small Methods, 2019, 3(6): 1800352 doi: 10.1002/smtd.201800352 [9] AlOtaibi B, Kong X, Vanka S, et al. Photochemical carbon dioxide reduction on Mg-doped Ga(in)N nanowire arrays under visible light irradiation. ACS Energy Lett, 2016, 1(1): 246 doi: 10.1021/acsenergylett.6b00119 [10] Sagara N, Kamimura S, Tsubota T, et al. Photoelectrochemical CO2 reduction by a p-type boron-doped g-C3N4 electrode under visible light. Appl Catal B:Environ, 2016, 192: 193 doi: 10.1016/j.apcatb.2016.03.055 [11] Hameed A, Ismail I M I, Aslam M, et al. Photocatalytic conversion of methane into methanol: Performance of silver impregnated WO3. Appl Catal A:Gen, 2014, 470: 327 doi: 10.1016/j.apcata.2013.10.045 [12] Gondal M A, Hameed A, Suwaiyan A. Photo-catalytic conversion of methane into methanol using visible laser. Appl Catal A:Gen, 2003, 243(1): 165 doi: 10.1016/S0926-860X(02)00562-8 [13] Villa K, Murcia-López S, Morante J R, et al. An insight on the role of La in mesoporous WO3 for the photocatalytic conversion of methane into methanol. Appl Catal B:Environ, 2016, 187: 30 doi: 10.1016/j.apcatb.2016.01.032 [14] Chen X, Li Y, Pan X, et al. Photocatalytic oxidation of methane over silver decorated zinc oxide nanocatalysts. Nat Commun, 2016, 7: 12273 doi: 10.1038/ncomms12273 [15] Li W, He D, Hu G X, et al. Selective CO production by photoelectrochemical methane oxidation on TiO2. ACS Central Sci, 2018, 4(5): 631 doi: 10.1021/acscentsci.8b00130 [16] Amano F, Shintani A, Tsurui K, et al. Photoelectrochemical homocoupling of methane under blue light irradiation. ACS Energy Lett, 2019, 4(2): 502 doi: 10.1021/acsenergylett.8b02436 [17] Li R, Xia Y, Xu L, et al. Study of rapidly synthesis of ZnO nanorods by microwave hydrothermal method and photocatalytic performance. Chin J Eng, 2020, 42(1): 78李蕊, 夏仡, 許磊, 等. 微波水熱法快速合成氧化鋅納米棒及其光催化性能. 工程科學學報, 2020, 42(1):78 [18] Bai X J, Wang L, Zong R L, et al. Performance enhancement of ZnO photocatalyst via synergic effect of surface oxygen defect and graphene hybridization. Langmuir, 2013, 29(9): 3097 doi: 10.1021/la4001768 [19] Bai Z M, Zhang Y H. A Cu2O/Cu2S?ZnO/CdS tandem photoelectrochemical cell for self-driven solar water splitting. J Alloys Compd, 2017, 698: 133 doi: 10.1016/j.jallcom.2016.12.261 [20] Pascariu P, Homocianu M, Cojocaru C, et al. Preparation of La doped ZnO ceramic nanostructures by electrospinning-calcination method: Effect of La3+ doping on optical and photocatalytic properties. Appl Surf Sci, 2019, 476: 16 doi: 10.1016/j.apsusc.2019.01.077 [21] Sowik J, Miodyńska M, Bajorowicz B, et al. Optical and photocatalytic properties of rare earth metal-modified ZnO quantum dots. Appl Surf Sci, 2019, 464: 651 doi: 10.1016/j.apsusc.2018.09.104 [22] Bai Z M, Yan X Q, Li Y, et al. 3D-branched ZnO/CdS nanowire arrays for solar water splitting and the service safety research. Adv Energy Mater, 2016, 6(3): 1501459 doi: 10.1002/aenm.201501459 [23] Luo J, Im J H, Mayer M T, et al. Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts. Science, 2014, 345(6204): 1593 doi: 10.1126/science.1258307 [24] Hou Y, Wen Z H, Cui S M, et al. Strongly coupled ternary hybrid aerogels of N-deficient porous graphitic-C3N4 nanosheets/N-doped graphene/NiFe-layered double hydroxide for solar-driven photoelectrochemical water oxidation. Nano Lett, 2016, 16(4): 2268 doi: 10.1021/acs.nanolett.5b04496 [25] Liu J, Zhang Y H, Huang Z A, et al. Photoelectrocatalytic oxidation of methane into methanol over ZnO nanowire arrays decorated with plasmonic Au nanoparticles. Nano, 2019, 14(2): 1950017 doi: 10.1142/S1793292019500176 [26] Tak Y, Hong S J, Lee J S, et al. Fabrication of ZnO/CdS core/shell nanowire arrays for efficient solar energy conversion. J Mater Chem, 2009, 19(33): 5945 doi: 10.1039/b904993b [27] Weng B, Yang M Q, Zhang N, et al. Toward the enhanced photoactivity and photostability of ZnO nanospheres via intimate surface coating with reduced graphene oxide. J Mater Chem A, 2014, 2(24): 9380 doi: 10.1039/c4ta01077a [28] Daems N, Sheng X, Vankelecom I F J, et al. Metal-free doped carbon materials as electrocatalysts for the oxygen reduction reaction. J Mater Chem A, 2014, 2(12): 4085 doi: 10.1039/C3TA14043A [29] Lu Z Y, Xu W W, Zhu W, et al. Three-dimensional NiFe layered double hydroxide film for high-efficiency oxygen evolution reaction. Chem Commun, 2014, 50(49): 6479 doi: 10.1039/C4CC01625D [30] Liang H F, Meng F, Cabán-Acevedo M, et al. Hydrothermal continuous flow synthesis and exfoliation of NiCo layered double hydroxide nanosheets for enhanced oxygen evolution catalysis. Nano Lett, 2015, 15(2): 1421 doi: 10.1021/nl504872s [31] Xie J J, Jin R X, Li A, et al. Highly selective oxidation of methane to methanol at ambient conditions by titanium dioxide-supported iron species. Nat Catal, 2018, 1(11): 889 doi: 10.1038/s41929-018-0170-x -