<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

銅錫合金激光選區熔化非平衡凝固組織與性能

李小璇 王曾潔 賀定勇 劉軒 薛濟來

李小璇, 王曾潔, 賀定勇, 劉軒, 薛濟來. 銅錫合金激光選區熔化非平衡凝固組織與性能[J]. 工程科學學報, 2021, 43(8): 1100-1106. doi: 10.13374/j.issn2095-9389.2020.10.29.006
引用本文: 李小璇, 王曾潔, 賀定勇, 劉軒, 薛濟來. 銅錫合金激光選區熔化非平衡凝固組織與性能[J]. 工程科學學報, 2021, 43(8): 1100-1106. doi: 10.13374/j.issn2095-9389.2020.10.29.006
LI Xiao-xuan, WANG Zeng-jie, HE Ding-yong, LIU Xuan, XUE Ji-lai. Nonequilibrium solidification microstructures and mechanical properties of selective laser-melted Cu–Sn alloy[J]. Chinese Journal of Engineering, 2021, 43(8): 1100-1106. doi: 10.13374/j.issn2095-9389.2020.10.29.006
Citation: LI Xiao-xuan, WANG Zeng-jie, HE Ding-yong, LIU Xuan, XUE Ji-lai. Nonequilibrium solidification microstructures and mechanical properties of selective laser-melted Cu–Sn alloy[J]. Chinese Journal of Engineering, 2021, 43(8): 1100-1106. doi: 10.13374/j.issn2095-9389.2020.10.29.006

銅錫合金激光選區熔化非平衡凝固組織與性能

doi: 10.13374/j.issn2095-9389.2020.10.29.006
基金項目: 北京市教委科技計劃資助項目(KM201910005010);國家自然科學基金資助項目(51674025);中央高校基本科研業務費專項資金資助項目(FRF-UM-15-049)
詳細信息
    通訊作者:

    E-mail: wangzj@bjut.edu.cn

  • 中圖分類號: TF801.1

Nonequilibrium solidification microstructures and mechanical properties of selective laser-melted Cu–Sn alloy

More Information
  • 摘要: 對具有重要工程應用價值的Cu?5%Sn合金進行激光選區熔化(SLM)成形,在激光功率160 W、掃描速度300 mm·s?1、掃描間距0.07 mm條件下,合金樣品相對密度可達99.2%,熔池層與層堆積密實,表面質量良好。研究發現所獲合金具有非平衡凝固組織特征,其中以α-Cu(Sn)固溶體相為主,且涉及具有超結構的γ相、δ相。顯微形貌主要由柱狀晶與富錫網狀組織構成,伴隨有不同尺度界面Sn元素偏析及晶界、晶內納米尺寸超結構合金相顆粒析出。所獲合金的力學性能與同成分鑄態合金或較低Sn含量SLM合金相比得到顯著強化,表面硬度可達HV 133.83,屈服強度326 MPa,抗拉強度387 MPa及斷裂總延伸率22.7%。

     

  • 圖  1  SLM成形Cu?5%Sn合金及表面光學顯微觀察。(a)SLM成形塊體;(b)頂表面形貌;(c)側表面形貌

    Figure  1.  Cu–5%Sn alloy prepared using the SLM technique and corresponding optical observation of the alloy surfaces: (a) SLM built block; (b) top surface image; (c) side surface image

    圖  2  氣霧化Cu?5%Sn合金粉末與SLM成形合金X射線衍射圖譜

    Figure  2.  X-Ray diffraction patterns for atomized prealloyed powder and as-built Cu–5%Sn

    圖  3  SLM成形Cu?5%Sn合金掃描電子顯微分析。(a)橫截面;(b)縱截面

    Figure  3.  Scanning electron microscopy (SEM) image of Cu–5%Sn alloy prepared using the selective laser melting technique: (a) transverse cross-section; (b) longitudinal cross-section

    圖  4  銅錫二元合金平衡相圖[22]及本文研究所獲Cu?5%Sn合金鑄態組織

    Figure  4.  Cu–Sn equilibrium binary phase diagram and microstructure of as-cast Cu–5%Sn alloys

    圖  5  SLM成形Cu?5%Sn合金樣品透射電子顯微分析。(a)明場像;(b)選區電子衍射;(c)暗場像;(d)高角環形暗場像

    Figure  5.  Transmission electron microscopy (TEM) image of the Cu–5%Sn alloy fabricated using the selective laser melting technique: (a) bright field image; (b) selected area electron diffraction; (c) dark field image; (d) high angle annular dark field image

    圖  6  α相、β相、γ相、δ相單胞(001)面示意圖

    Figure  6.  Schematic of (001) faces for lattice of α, β, γ, and δ phases

    圖  7  Cu?5%Sn合金SLM成形樣品準靜態拉伸試驗工程應力?應變曲線圖

    Figure  7.  Engineering stress–strain curves of the SLM-built Cu–5% Sn alloy using quasistatic tensile tests

    表  1  Cu?5% Sn合金激光選區熔化成形參數與相對密度匯總

    Table  1.   Selective laser melting parameters and corresponding relative densities of as-prepared Cu–5% Sn alloys

    Experimental numberLaser power/
    W
    Scanning speed/
    (mm·s?1)
    Line spacing/
    mm
    Energy density/
    (J·mm?3)
    Relative density/%
    11203000.03666.6691.47
    21206000.05200.0090.77
    31209000.0795.2491.09
    41406000.07166.6695.77
    51409000.03259.2693.36
    61403000.05466.6696.34
    71603000.07380.9699.19
    81606000.03444.4496.28
    91609000.05177.7894.70
    R5.612.621.65
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Tuncer N, Bose A. Solid-state metal additive manufacturing: A review. JOM, 2020, 72(9): 3090 doi: 10.1007/s11837-020-04260-y
    [2] Tan Z, Zhang X Y, Zhou Z L, et al. Thermal effect on the microstructure of the lattice structure Cu?10Sn alloy fabricated through selective laser melting. J Alloys Compd, 2019, 787: 903 doi: 10.1016/j.jallcom.2019.02.196
    [3] Li A, Liu X F, Yu B, et al. Key factors and developmental directions with regard to metal additive manufacturing. Chin J Eng, 2019, 41(2): 159

    李昂, 劉雪峰, 俞波, 等. 金屬增材制造技術的關鍵因素及發展方向. 工程科學學報, 2019, 41(2):159
    [4] Bai Y C, Yang Y Q, Wang D, et al. Selective laser melting of Tin bronze alloy and its properties. Rare Met Mater Eng, 2018, 47(3): 1007

    白玉超, 楊永強, 王迪, 等. 錫青銅激光選區熔化工藝及其性能. 稀有金屬材料與工程, 2018, 47(3):1007
    [5] Yamamoto T, Yuda R, Nagae T. Effect of heat treatment on microstructure and mechanical properties of Cu?Sn alloys fabricated by selective laser melting. J Jpn Inst Copper, 2018, 57(1): 137

    山本貴文, 湯田稜也, J 長. レーザ積層造形により作製した Cu?Sn系合金造形體の金屬組織と機械的特性に及ぼす熱処理の影響. 銅と銅合金: 銅及び銅合金技術研究會誌, 2018, 57(1):137
    [6] Mao Z F, Zhang D Z, Jiang J J, et al. Processing optimization, mechanical properties and microstructural evolution during selective laser melting of Cu?15Sn high-tin bronze. Mater Sci Eng A, 2018, 721: 125 doi: 10.1016/j.msea.2018.02.051
    [7] Scudino S, Unterdorfer C, Prashanth K G, et al. Additive manufacturing of Cu?10Sn bronze. Mater Lett, 2015, 156: 202 doi: 10.1016/j.matlet.2015.05.076
    [8] Gustmann T, dos Santos J M, Gargarella P, et al. Properties of Cu-based shape memory alloys prepared by selective laser melting. Shape Memory Superelast, 2017, 3(1): 24 doi: 10.1007/s40830-016-0088-6
    [9] Yan M, Wu Y C, Chen J C, et al. Microstructure evolution in preparation of Cu?Sn contact wire for high-speed railway. Adv Mater Res, 2011, 415-417: 446 doi: 10.4028/www.scientific.net/AMR.415-417.446
    [10] Ventura A P. Microstructure Evolution and Mechanical Property Development of Selective Laser Melted Cooper Alloys [Dissertation]. Bethlehem: Lehigh University, 2017
    [11] Walker D C, Caley W F, Brochu M. Selective laser sintering of composite copper-tin powders. J Mater Res, 2014, 29(17): 1997 doi: 10.1557/jmr.2014.194
    [12] Luo J H. Evolution and Mechanism of Chemical Composition, Microstructure and Properties for Two-phase Zone Continuous Casting Cu–Sn Alloy [Dissertation]. Beijing: University of Science and Technology Beijing, 2017

    羅繼輝. 兩相區連鑄銅錫合金的化學成分和組織性能變化規律及機理[學位論文]. 北京: 北京科技大學, 2017
    [13] Zhou X. Research on Micro-scale Melt Pool Characteristics and Solidified Microstructures in Selective Laser Melting [Dissertation]. Beijing: Tsinghua University, 2016

    周鑫. 激光選區熔化微尺度熔池特性與凝固微觀組織[學位論文]. 北京: 清華大學, 2016
    [14] Zhang L, Liu Z Q. Inhibition of Intermetallic compounds growth at Sn?58Bi/Cu interface bearing CuZnAl memory particles(2?6 μm). J Mater Sci Mater Electron, 2020, 31(3): 2466 doi: 10.1007/s10854-019-02784-x
    [15] Li X, Ivas T, Spierings A B, et al. Phase and microstructure formation in rapidly solidified Cu?Sn and Cu?Sn?Ti alloys. J Alloys Compd, 2018, 735: 1374 doi: 10.1016/j.jallcom.2017.11.237
    [16] Zhai W, Wang W L, Geng D L, et al. A DSC analysis of thermodynamic properties and solidification characteristics for binary Cu?Sn alloys. Acta Mater, 2012, 60(19): 6518 doi: 10.1016/j.actamat.2012.08.013
    [17] Wang Z J, Konno T J. Discontinuous precipitation with metastable ζ phase in a Cu?8.6%Sn alloy. Philos Mag, 2013, 93(8): 949 doi: 10.1080/14786435.2012.738940
    [18] Yin Z Z, Sun F L, Guo M J. The fast formation of Cu?Sn intermetallic compound in Cu/Sn/Cu system by introduction heating process. Mater Lett, 2018, 215: 207 doi: 10.1016/j.matlet.2017.12.102
    [19] Wang Z J, Konno T J. Comparative TEM study on as-cast ingot and nodular bainite of Cu?14.9%Sn alloy. Philos Mag, 2014, 94(4): 420 doi: 10.1080/14786435.2013.853886
    [20] Li X, Xue J L, Lang G H, et al. Porous structure evolution of graphitic cathode materials for aluminum electrolysis at various baking temperatures. J Univ Sci Technol Beijing, 2014, 36(9): 1233

    李想, 薛濟來, 郎光輝, 等. 鋁用石墨質陰極不同焙燒溫度下孔隙結構演化. 北京科技大學學報, 2014, 36(9):1233
    [21] Wang X F, Zhao J Z, He J, et al. Microstructural features and mechanical properties induced by the spray forming and cold rolling of the Cu?13.5wt pct Sn alloy. J Mater Sci Technol, 2008, 24(5): 803
    [22] Saunders N, Miodownik A P. The Cu?Sn(Copper?Tin) system. Bull Alloy Phase Diagrams, 1990, 11(3): 278 doi: 10.1007/BF03029299
    [23] Fürtauer S, Li D, Cupid D, et al. The Cu–Sn phase diagram, Part I: New experimental results. Intermetallics, 2013, 34: 142 doi: 10.1016/j.intermet.2012.10.004
    [24] Wang Z J, Toyohiko T J, Ma C L. Comparative TEM investigation on the precipitation behaviors in Cu?15wt%Sn alloy. Rare Met, 2013, 32(2): 139 doi: 10.1007/s12598-013-0033-1
    [25] Mao Z F, Zhang D Z, Wei P T, et al. Manufacturing feasibility and forming properties of Cu?4Sn in selective laser melting. Materials, 2017, 10(4): 333 doi: 10.3390/ma10040333
    [26] Ventura A P, Wade C A, Pawlikowski G, et al. Mechanical properties and microstructural characterization of Cu?4.3 Pct Sn fabricated by selective laser melting. Metall Mater Trans A, 2017, 48(1): 178 doi: 10.1007/s11661-016-3779-x
  • 加載中
圖(7) / 表(1)
計量
  • 文章訪問數:  1228
  • HTML全文瀏覽量:  489
  • PDF下載量:  63
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-10-29
  • 網絡出版日期:  2020-12-22
  • 刊出日期:  2021-08-25

目錄

    /

    返回文章
    返回