<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

基于梯度壓縮的YOLO v4算法車型識別

牟亮 趙紅 李燕 仇俊政 孫傳龍 劉曉童

牟亮, 趙紅, 李燕, 仇俊政, 孫傳龍, 劉曉童. 基于梯度壓縮的YOLO v4算法車型識別[J]. 工程科學學報, 2022, 44(5): 940-950. doi: 10.13374/j.issn2095-9389.2020.10.28.006
引用本文: 牟亮, 趙紅, 李燕, 仇俊政, 孫傳龍, 劉曉童. 基于梯度壓縮的YOLO v4算法車型識別[J]. 工程科學學報, 2022, 44(5): 940-950. doi: 10.13374/j.issn2095-9389.2020.10.28.006
MU Liang, ZHAO Hong, LI Yan, QIU Jun-zheng, SUN Chuan-long, LIU Xiao-Tong. Vehicle recognition based on gradient compression and YOLO v4 algorithm[J]. Chinese Journal of Engineering, 2022, 44(5): 940-950. doi: 10.13374/j.issn2095-9389.2020.10.28.006
Citation: MU Liang, ZHAO Hong, LI Yan, QIU Jun-zheng, SUN Chuan-long, LIU Xiao-Tong. Vehicle recognition based on gradient compression and YOLO v4 algorithm[J]. Chinese Journal of Engineering, 2022, 44(5): 940-950. doi: 10.13374/j.issn2095-9389.2020.10.28.006

基于梯度壓縮的YOLO v4算法車型識別

doi: 10.13374/j.issn2095-9389.2020.10.28.006
基金項目: 青島市民生科技計劃資助項目(19-6-1-88-nsh);山東省重點研發計劃資助項目(2018GGX105004)
詳細信息
    通訊作者:

    E-mail: qdlizh@163.com

  • 中圖分類號: TP391.4

Vehicle recognition based on gradient compression and YOLO v4 algorithm

More Information
  • 摘要: 為進一步提高智能交通系統對車輛及不同車型識別的泛化性、魯棒性與實時性。根據檢測區域的特征有針對性地構建數據集,改變余弦退火衰減(CD)學習率的更新方式,提出一種基于梯度壓縮(GC)的Adam優化算法(Adam?GC)來提高YOLO v4算法的訓練速度、檢測精度以及網絡模型的泛化能力。為驗證改進后YOLO v4算法的有效性,對實際路況的車流進行采集后,利用訓練完成的網絡模型對不同密度車流進行定量的車型檢測實驗驗證。經實驗驗證,改進后方法的整體檢測結果要優于改進前,YOLO v4和YOLO v4 GC CD訓練得到的網絡模型在阻塞流樣本下檢測得到的準確率分別為94.59%和96.46%;在同步流樣本下檢測得到的準確率分別為95.34%和97.20%;在自由流樣本下檢測得到的準確率分別為95.98%和97.88%。

     

  • 圖  1  CSPDarknet53特征提取網絡

    Figure  1.  CSPDarknet53 feature extraction network

    圖  2  兩種激活函數圖像。(a)Mish激活函數;(b)ReLU激活函數

    Figure  2.  Two kinds of activation function images: (a) Mish activation function; (b) ReLU activation function

    圖  3  梯度平滑曲線

    Figure  3.  Gradient smoothing curve

    圖  4  Adam-GC 的幾何解釋

    Figure  4.  Geometric interpretation of Adam-GC

    圖  5  學習率衰減策略及Loss、Accuracy圖。(a)更新前后學習率衰減策略;(b)Loss圖; (c)Accuracy圖

    Figure  5.  learning rate decay strategy and Loss, Accuracy chart: (a) learning rate decay strategy before and after update; (b) Loss chart; (c) Accuracy chart

    圖  6  市區中主要車型樣本圖。(a)小汽車;(b)公交車;(c)貨車

    Figure  6.  Sample map of the main models in the urban area: (a) car; (b) bus; (c) truck

    圖  7  阻塞流車流樣本。(a)福州北路1;(b)福州北路2;(c)重慶南路1;(d)重慶南路2

    Figure  7.  Traffic flow sample of blocked flow: (a) Fuzhou North Road 1; (b) Fuzhou North Road 2; (c) Chongqing South Road 1; (d) Chongqing South Road 2

    圖  8  同步流車流樣本。(a)福州北路1;(b)福州北路2;(c)重慶南路1;(d)重慶南路2

    Figure  8.  Traffic flow sample of synchronous flow: (a) Fuzhou North Road 1; (b) Fuzhou North Road 2; (c) Chongqing South Road 1; (d) Chongqing South Road 2

    圖  9  自由流車流樣本。(a)福州北路1;(b)福州北路2;(c)重慶南路1;(d)重慶南路2

    Figure  9.  Traffic flow sample of free flow: (a) Fuzhou North Road 1; (b) Fuzhou North Road 2; (c) Chongqing South Road 1; (d) Chongqing South Road 2

    圖  10  貨車數據增強樣本圖。(a)樣本1;(b)樣本2;(c)樣本3

    Figure  10.  Truck data enhancement sample diagram: (a) sample 1; (b) sample 2; (c) sample 3

    圖  11  各種算法訓練的Loss曲線

    Figure  11.  Loss curves trained by various algorithms

    圖  12  自由流樣本檢測對比。(a)YOLO v4在場景1的檢測結果;(b)YOLO v4在場景2的檢測結果;(c)YOLO v4在場景3的檢測結果;(d)YOLO v4 GC CD在場景1檢測結果;(e)YOLO v4 GC CD在場景2檢測結果;(f)YOLO v4 GC CD在場景3檢測結果

    Figure  12.  Comparison of free flow sample detection: (a) detection results of YOLO v4 in scenario 1; (b) detection results of YOLO v4 in scenario 2; (c) detection results of YOLO v4 in scenario 3; (d) detection results of YOLO v4 GC CD in scenario 1; (e) detection results of YOLO v4 GC CD in scenario 2; (f) detection results of YOLO v4 GC CD in scenario 3

    圖  13  同步流樣本檢測結果對比。(a)YOLO v4在場景1的檢測結果;(b)YOLO v4在場景2的檢測結果;(c)YOLO v4在場景3的檢測結果;(d)YOLO v4 GC CD在場景1檢測結果;(e)YOLO v4 GC CD在場景2檢測結果;(f)YOLO v4 GC CD在場景3檢測結果

    Figure  13.  Comparison of synchronous flow sample detection: (a) detection results of YOLO v4 in scenario 1; (b) detection results of YOLO v4 in scenario 2; (c) detection results of YOLO v4 in scenario 3; (d) detection results of YOLO v4 GC CD in scenario 1; (e) detection results of YOLO v4 GC CD in scenario 2; (f) detection results of YOLO v4 GC CD in scenario 3

    圖  14  阻塞流樣本檢測結果對比。(a)YOLO v4在場景1的檢測結果;(b)YOLO v4在場景2的檢測結果;(c)YOLO v4在場景3的檢測結果;(d)YOLO v4 GC CD在場景1檢測結果;(e)YOLO v4 GC CD在場景2檢測結果;(f)YOLO v4 GC CD在場景3檢測結果

    Figure  14.  Comparison of blocked flow sample detection: (a) detection results of YOLO v4 in scenario 1; (b) detection results of YOLO v4 in scenario 2; (c) detection results of YOLO v4 in scenario 3; (d) detection results of YOLO v4 GC CD in scenario 1; (e) detection results of YOLO v4 GC CD in scenario 2; (f) detection results of YOLO V4 GC CD in scenario 3

    圖  15  針對不同車型的P?R曲線。(a)小汽車;(b)公交車;(c)貨車

    Figure  15.  P?R curves for different models: (a) car; (b) bus; (c) truck

    圖  16  YOLO v4 GC CD算法在夜間和雨天場景下的檢測效果。(a)夜間場景1;(b)夜間場景2; (c)雨天場景1;(d)雨天場景2

    Figure  16.  Detection effect of YOLO V4 GC CD algorithm in night and rainy day scenarios: (a) night scene 1; (b) night scene 2; (c) rainy day scene 1; (d) rainy day scene 2

    表  1  針對不同車流密度的準確性測試結果對比

    Table  1.   Comparison of accuracy test results for different traffic densities

    Traffic densityYOLO v4 GC CD YOLO v4
    Actual number of vehiclesError number of vehiclesAccuracy/% Actual number of vehiclesError number of vehiclesAccuracy/%
    Free flow4731097.88 4731995.98
    Synchronous flow6451897.206453095.34
    Blocking flow14985396.4614988194.59
    下載: 導出CSV

    表  2  YOLO v4?GC?CD在雨天和夜間場景下的準確性

    Table  2.   Accuracy of YOLO v4 GC CD in rainy and nighttime scenarios

    The scene typeActual number of vehiclesError number of vehiclesAccuracy/%
    Night7936392.06
    Rain7123295.51
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Mu S D, Xiong Z X, Tian Y X. Intelligent traffic control system based on cloud computing and big data mining. IEEE Trans Ind Inf, 2019, 15(12): 6583 doi: 10.1109/TII.2019.2929060
    [2] Meng C C, Bao H, Ma Y. Vehicle detection: A review // The 2020 3rd International Conference on Computer Information Science and Application Technology (CISAT). Dali, 2020: 012107.
    [3] Li X, Liu Z Q, Leung K M. Detection of vehicles from traffic scenes using fuzzy integrals. Pattern Recognit, 2002, 35(4): 967 doi: 10.1016/S0031-3203(01)00079-6
    [4] Wei X, Liu S F, Xiang Y C, et al. Incremental learning based multi-domain adaptation for object detection. Knowl Based Syst, 2020, 210: 106420 doi: 10.1016/j.knosys.2020.106420
    [5] Rohlfing M L, Buckley D P, Piraquive J, et al. Hey siri: How effective are common voice recognition systems at recognizing dysphonic voices? Laryngoscope, 2021, 131(7): 1599
    [6] Zeng J, Li S Y, Zhang H C. Study on sub-region multi-feature image fusion oblique vehicle detection algorithm. J Highw Transp Res Dev, 2020, 37(8): 99 doi: 10.3969/j.issn.1002-0268.2020.08.013

    曾娟, 李守義, 張洪昌. 圖像分區域多特征融合斜向車輛檢測算法研究. 公路交通科技, 2020, 37(8):99 doi: 10.3969/j.issn.1002-0268.2020.08.013
    [7] Ma B N. Research on Vehicle Tracking Based on Video Streaming [Dissertation]. Chengdu: University of Electronic Science and Technology of China, 2020

    馬泊寧. 基于視頻流的車輛跟蹤算法研究[學位論文]. 成都: 電子科技大學, 2020
    [8] Cai Y F, Liu Z, Wang H, et al. Vehicle detection by fusing part model learning and semantic scene information for complex urban surveillance. Sensors, 2018, 18(10): 3505 doi: 10.3390/s18103505
    [9] Cao J W, Song C X, Song S X, et al. Front vehicle detection algorithm for smart car based on improved SSD model. Sensors, 2020, 20(16): 4646 doi: 10.3390/s20164646
    [10] Tian Y, Yang G, Wang Z, et al. Apple detection during different growth stages in orchards using the improved YOLO-V3 model. Comput Electron Agric, 2019, 157: 417 doi: 10.1016/j.compag.2019.01.012
    [11] Xie H S, Wu Z S. A robust fabric defect detection method based on improved RefineDet. Sensors, 2020, 20(15): 4260 doi: 10.3390/s20154260
    [12] Shi L, Jing M E, Fan Y B, et al. Segmentation detection algorithm based on R-CNN algorithm. J Fudan Univ Nat Sci, 2020, 59(4): 412

    史磊, 荊明娥, 范益波, 等. 基于R-CNN算法的分割檢測算法. 復旦學報(自然科學版), 2020, 59(4):412
    [13] Wei Z Y, Zhao Z H, Zhao J J. Improved faster R-CNN algorithm and its application on vehicle detection. J Appl Sci, 2020, 38(3): 377 doi: 10.3969/j.issn.0255-8297.2020.03.004

    魏子洋, 趙志宏, 趙敬嬌. 改進Faster R-CNN算法及其在車輛檢測中的應用. 應用科學學報, 2020, 38(3):377 doi: 10.3969/j.issn.0255-8297.2020.03.004
    [14] Hu Z H. 3D Object Detection Based on Deep Learning [Dissertation]. Xi'an: Xidian University, 2018

    胡增輝. 基于深度學習的3D物體檢測[學位論文]. 西安: 西安電子科技大學, 2018
    [15] Zhao K, Liu L, Meng Y, et al. Traffic signs detection and recognition under low-illumination conditions. Chin J Eng, 2020, 42(8): 1074

    趙坤, 劉立, 孟宇, 等. 弱光照條件下交通標志檢測與識別. 工程科學學報, 2020, 42(8):1074
    [16] Cao K N. Detection of Vehicle Target Based on Deep Learning [Dissertation]. Changchun: Jilin University, 2019

    曹凱寧. 基于深度學習的車輛目標檢測[學位論文]. 長春: 吉林大學, 2019
    [17] Misra D. Mish. A self regularized non-monotonic activation function[J/OL]. arXiv preprint online (2019-08-23) [2020-10-28].https://arxiv.org/abs/1908.08681
    [18] Zou D F, Cao Y, Zhou D R, et al. Gradient descent optimizes over-parameterized deep ReLU networks. Mach Learn, 2020, 109(3): 467 doi: 10.1007/s10994-019-05839-6
    [19] Kalayeh M M, Shah M. Training faster by separating modes of variation in batch-normalized models. IEEE Trans Pattern Anal Mach Intell, 2020, 42(6): 1483 doi: 10.1109/TPAMI.2019.2895781
    [20] Qiao S, Wang H, Liu C, et al. Weight Standardization [J/OL]. arXiv preprint online (2019-05-25) [2020-10-28].https://arxiv.org/abs/1903.10520v1
    [21] Cheng K Y, Tao F, Zhan Y Z, et al. Hierarchical attributes learning for pedestrian re-identification via parallel stochastic gradient descent combined with momentum correction and adaptive learning rate. Neural Comput Appl, 2020, 32(10): 5695 doi: 10.1007/s00521-019-04485-2
    [22] Melinte D O, Vladareanu L. Facial expressions recognition for human–robot interaction using deep convolutional neural networks with rectified Adam optimizer. Sensors, 2020, 20(8): 2393 doi: 10.3390/s20082393
    [23] Gupta H, Jin K H, Nguyen H Q, et al. CNN-based projected gradient descent for consistent CT image reconstruction. IEEE Trans Med Imaging, 2018, 37(6): 1440 doi: 10.1109/TMI.2018.2832656
    [24] He Y Y, Li B Q. A combinatory form learning rate scheduling for deep learning model. Acta Autom Sin, 2016, 42(6): 953

    賀昱曜, 李寶奇. 一種組合型的深度學習模型學習率策略. 自動化學報, 2016, 42(6):953
    [25] Li X, Zhao Z F, Liu L, et al. An optimization model of multi-intersection signal control for trunk road under collaborative information. J Control Sci Eng, 2017, 2017: 1
  • 加載中
圖(16) / 表(2)
計量
  • 文章訪問數:  1037
  • HTML全文瀏覽量:  434
  • PDF下載量:  90
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-10-28
  • 網絡出版日期:  2021-02-26
  • 刊出日期:  2022-05-25

目錄

    /

    返回文章
    返回