<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

一類離散動態系統基于事件的迭代神經控制

王鼎

王鼎. 一類離散動態系統基于事件的迭代神經控制[J]. 工程科學學報, 2022, 44(3): 411-419. doi: 10.13374/j.issn2095-9389.2020.10.28.002
引用本文: 王鼎. 一類離散動態系統基于事件的迭代神經控制[J]. 工程科學學報, 2022, 44(3): 411-419. doi: 10.13374/j.issn2095-9389.2020.10.28.002
WANG Ding. Event-based iterative neural control for a type of discrete dynamic plant[J]. Chinese Journal of Engineering, 2022, 44(3): 411-419. doi: 10.13374/j.issn2095-9389.2020.10.28.002
Citation: WANG Ding. Event-based iterative neural control for a type of discrete dynamic plant[J]. Chinese Journal of Engineering, 2022, 44(3): 411-419. doi: 10.13374/j.issn2095-9389.2020.10.28.002

一類離散動態系統基于事件的迭代神經控制

doi: 10.13374/j.issn2095-9389.2020.10.28.002
基金項目: 北京市自然科學基金資助項目(JQ19013); 國家自然科學基金資助項目(61773373, 61890930-5, 62021003);科技創新2030——“新一代人工智能”重大項目(2021ZD0112300-2);國家重點研發計劃資助項目(2018YFC1900800-5)
詳細信息
    通訊作者:

    E-mail: dingwang@bjut.edu.cn

  • 中圖分類號: TP13

Event-based iterative neural control for a type of discrete dynamic plant

More Information
  • 摘要: 面向離散時間非線性動態系統,提出一種基于事件的迭代神經控制框架。主要目標是將迭代自適應評判方法與事件驅動機制結合起來,以解決離散時間非線性系統的近似最優調節問題。首先,構造兩個迭代序列并建立一種事件觸發的值學習策略。其次,詳細給出迭代算法的收斂性分析和新型框架的神經網絡實現。這里是在基于事件的迭代環境下實施啟發式動態規劃技術。此外,通過設計適當的閾值以確定事件驅動方法的觸發條件。最后,借助兩個仿真實例驗證本文控制方案的優越性能,尤其是在通信資源的利用方面。本文的工作有助于構建一類事件驅動機制下的智能控制系統.

     

  • 圖  1  離散動態系統基于事件的迭代HDP框架簡圖

    Figure  1.  Simple diagram of the event-based iterative heuristic dynamic programming (HDP) framework with discrete dynamic plants

    圖  2  執行迭代HDP算法之后的事件驅動控制實現過程

    Figure  2.  Event-based control implementation process after conducting the iterative HDP algorithm

    圖  3  迭代代價函數的收斂性(例1)

    Figure  3.  Convergence of the iterative cost function (Example 1)

    圖  4  兩種情況下的狀態軌跡(例1)

    Figure  4.  State trajectory of the two cases (Example 1)

    圖  5  觸發閾值(例1)

    Figure  5.  Triggering threshold (Example 1)

    圖  6  兩種情況下的控制輸入(例1)

    Figure  6.  Control input of the two cases (Example 1)

    圖  7  驅動時刻間隔(例1)

    Figure  7.  Triggering interval (Example 1)

    圖  8  迭代代價函數的收斂性(例2)

    Figure  8.  Convergence of the iterative cost function (Example 2)

    圖  9  兩種情況下的狀態軌跡(例2)

    Figure  9.  State trajectory of the two cases (Example 2)

    圖  10  觸發閾值(例2)

    Figure  10.  Triggering threshold (Example 2)

    圖  11  兩種情況下的控制輸入(例2)

    Figure  11.  Control input of the two cases (Example 2)

    圖  12  驅動時刻間隔(例2)

    Figure  12.  Triggering interval (Example 2)

    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Werbos P J. Approximate dynamic programming for real-time control and neural modeling. In White D A and Sofge D A (Eds. ) Handbook of Intelligent Control: Neural, Fuzzy, and Adaptive Approaches. New York, NY: Van Nostrand Reinhold, 1992
    [2] Li J N, Chai T Y, Lewis F L, et al. Off-policy interleaved Q-learning: Optimal control for affine nonlinear discrete-time systems. IEEE Trans Neural Netw Learn Syst, 2019, 30(5): 1308 doi: 10.1109/TNNLS.2018.2861945
    [3] Zhang H G, Liu Y, Xiao G Y, et al. Data-based adaptive dynamic programming for a class of discrete-time systems with multiple delays. IEEE Trans Syst Man Cybern:Syst, 2020, 50(2): 432 doi: 10.1109/TSMC.2017.2758849
    [4] Zhang H G, Jiang H, Luo Y H, et al. Data-driven optimal consensus control for discrete-time multi-agent systems with unknown dynamics using reinforcement learning method. IEEE Trans on Ind Electron, 2017, 64(5): 4091 doi: 10.1109/TIE.2016.2542134
    [5] Ha M M, Wang D, Liu D R. Generalized value iteration for discounted optimal control with stability analysis. Syst Control Lett, 2021, 147: 104847 doi: 10.1016/j.sysconle.2020.104847
    [6] Wang D, Ha M M, Qiao J F. Data-driven iterative adaptive critic control towards an urban wastewater treatment plant. IEEE Trans Ind Electron, 2021, 68(8): 7362 doi: 10.1109/TIE.2020.3001840
    [7] Wang D, Ha M M, Qiao J F, et al. Data-based composite control design with critic intelligence for a wastewater treatment platform. Artif Intell Rev, 2020, 53(5): 3773 doi: 10.1007/s10462-019-09778-5
    [8] Liang M M, Wang D, Liu D R. Improved value iteration for neural-network-based stochastic optimal control design. Neural Netw, 2020, 124: 280 doi: 10.1016/j.neunet.2020.01.004
    [9] Liang M M, Wang D, Liu D R. Neuro-optimal control for discrete stochastic processes via a novel policy iteration algorithm. IEEE Trans Syst Man Cybern:Syst, 2020, 50(11): 3972 doi: 10.1109/TSMC.2019.2907991
    [10] Hou J X, Wang D, Liu D R, et al. Model-free H optimal tracking control of constrained nonlinear systems via an iterative adaptive learning algorithm. IEEE Trans Syst Man Cybern:Syst, 2020, 50(11): 4097 doi: 10.1109/TSMC.2018.2863708
    [11] Luo B, Liu D R, Huang T W, et al. Model-free optimal tracking control via critic-only Q-learning. IEEE Trans Neural Netw Learn Syst, 2016, 27(10): 2134 doi: 10.1109/TNNLS.2016.2585520
    [12] Al-Tamimi A, Lewis F L, Abu-Khalaf M. Discrete-time nonlinear HJB solution using approximate dynamic programming: Convergence proof. IEEE Trans Syst Man Cybern B:Cybern, 2008, 38(4): 943 doi: 10.1109/TSMCB.2008.926614
    [13] Zhang H G, Luo Y H, Liu D R. Neural-network-based near-optimal control for a class of discrete-time affine nonlinear systems with control constraints. IEEE Trans Neural Netw, 2009, 20(9): 1490 doi: 10.1109/TNN.2009.2027233
    [14] Wang D, Liu D R, Wei Q L, et al. Optimal control of unknown nonaffine nonlinear discrete-time systems based on adaptive dynamic programming. Automatica, 2012, 48(8): 1825 doi: 10.1016/j.automatica.2012.05.049
    [15] Zhong X, Ni Z, He H. A theoretical foundation of goal representation heuristic dynamic programming. IEEE Trans Neural Netw Learn Syst, 2016, 27(12): 2513 doi: 10.1109/TNNLS.2015.2490698
    [16] Yang X, Liu D R, Wang D, et al. Discrete-time online learning control for a class of unknown nonaffine nonlinear systems using reinforcement learning. Neural Netw, 2014, 55: 30 doi: 10.1016/j.neunet.2014.03.008
    [17] Tabuada P. Event-triggered real-time scheduling of stabilizing control tasks. IEEE Trans Autom Control, 2007, 52(9): 1680 doi: 10.1109/TAC.2007.904277
    [18] Fan Q Y, Yang G H. Event-based fuzzy adaptive fault-tolerant control for a class of nonlinear systems. IEEE Trans Fuzzy Syst, 2018, 26(5): 2686 doi: 10.1109/TFUZZ.2018.2800724
    [19] Zhou Y, Zeng Z. Event-triggered impulsive control on quasi-synchronization of memristive neural networks with time-varying delays. Neural Netw, 2019, 110: 55 doi: 10.1016/j.neunet.2018.09.014
    [20] Wang D, Zhong X N. Advanced policy learning near-optimal regulation. IEEE/CAA J Autom Sin, 2019, 6(3): 743 doi: 10.1109/JAS.2019.1911489
    [21] Wang D. Research progress on learning-based robust adaptive critic control. Acta Autom Sin, 2019, 45(6): 1031

    王鼎. 基于學習的魯棒自適應評判控制研究進展. 自動化學報, 2019, 45(6):1031
    [22] Zhang H G, Su H G, Zhang K, et al. Event-triggered adaptive dynamic programming for non-zero-sum games of unknown nonlinear systems via generalized fuzzy hyperbolic models. IEEE Trans Fuzzy Syst, 2019, 27(11): 2202 doi: 10.1109/TFUZZ.2019.2896544
    [23] Eqtami A, Dimarogonas D V, Kyriakopoulos K J. Event-triggered control for discrete-time systems // Proceedings of the 2010 American Control Conference, Baltimore, 2010: 4719
    [24] Dong L, Zhong X N, Sun C Y, et al. Adaptive event-triggered control based on heuristic dynamic programming for nonlinear discrete-time systems. IEEE Trans Neural Netw Learn Syst, 2017, 28(7): 1594 doi: 10.1109/TNNLS.2016.2541020
    [25] Ha M M, Wang D, Liu D R. Event-triggered adaptive critic control design for discrete-time constrained nonlinear systems. IEEE Trans Syst Man Cybern:Syst, 2020, 50(9): 3158 doi: 10.1109/TSMC.2018.2868510
    [26] Dhar N K, Verma N K, Behera L. Adaptive critic-based event-triggered control for HVAC system. IEEE Trans Ind Inform, 2018, 14(1): 178 doi: 10.1109/TII.2017.2725899
  • 加載中
圖(12)
計量
  • 文章訪問數:  845
  • HTML全文瀏覽量:  400
  • PDF下載量:  73
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-10-28
  • 網絡出版日期:  2020-12-11
  • 刊出日期:  2022-01-08

目錄

    /

    返回文章
    返回