Experimental study on the thermal runaway and its propagation of a lithium-ion traction battery with NCM cathode under thermal abuse
-
摘要: 以電動汽車車用額定容量為42 A·h的三元方殼鋰離子電池單體和模組為研究對象,研究其在加熱條件下單體的絕熱熱失控特性及成組后側向加熱熱失控蔓延特性。結果表明,鋰離子電池在發生熱失控時,內部最高溫度可達920 ℃,電池表面和內部最大溫差達403 ℃;熱失控首先在迎向熱流的面觸發,隨后蔓延至整個電池;滿電狀態下的鋰離子電池內部熱失控蔓延時間介于8~12 s;熱失控蔓延過程中鋰離子電池的溫度特征與絕熱熱失控測試相比存在較大差異性;熱失控噴發顆粒物中,LiF及石墨質量分數占80%以上;模組中失控電池產生的總能量中用于自身加熱和噴發損失的占90%左右,熱失控釋放總能量的10%足以觸發熱失控蔓延。本文為研究三元鋰離子電池模組安全設計、熱失控蔓延抑制及新能源汽車的火災事故調查提供了參考。Abstract: Traction battery is the core component of the electric vehicle. To obtain longer driving ranges, conventional lithium-ion batteries with LiMn2O4, LiCoO2, and LiFePO4 cathodes were gradually replaced by LiNixCoyMn1?x?yO2 batteries. With the increasing energy density and chemical activity of the lithium-ion traction battery, its thermal stability gradually decreases and safety hazards become increasingly serious. In recent years, thermal runaway incidents with traction batteries have occurred frequently at home and abroad, seriously disturbing the development of electric vehicles. Solving the safety problems associated with thermal runaway(TR) and thermal runaway propagation(TRP) of the lithium-ion battery is urgent. In this paper, TR and its propagation behavior, associated with a 42 A·h prismatic lithium-ion battery with a LiNi1/3Co1/3Mn1/3O2 cathode for electric vehicles, were studied under thermal abuse conditions on the cell and module levels. The results indicate that the maximum temperature approaches 920 ℃ inside the cell. The maximum temperature difference is up to 403 ℃ within the cell during TR, and the maximum temperature rise rate inside the cell is 40 ℃·s?1. The TRP time within a lithium-ion battery is 8–12 s under 100% state-of-charge (SOC), and the duration of the vent is 14–18 s. The temperature characteristics of the lithium-ion battery display large differences for the TRP test and adiabaticTR test. In a propagation test, the TR initiates from a forward surface toward the failure point, whereas under the adiabatic test the TR occurs simultaneously in the cell. More than 80% of the particles vented from the cell are LiF and graphite during the adiabatic test. Approximately 90% of the heat released by the TR is used for heating the residual and venting particles of the cell. The study offers a reference guide for the safety design and mitigation strategy of TRP in lithium-ion battery modules, and accident investigations of new energy vehicles.
-
Key words:
- lithium-ion battery /
- thermal runaway /
- thermal runaway propagation /
- energy storage /
- safety
-
圖 7 電池熱失控前后材料化學分析。(a)未失控正極掃描電鏡照片;(b)失控后正極殘骸掃描電鏡照片;(c)噴發顆粒物掃描電鏡照片;(d)未失控、失控后、噴發顆粒能譜結果;(e) 噴發顆粒物及失控后正極X射線衍射圖
Figure 7. Chemical analysis of the lithium-ion battery before and after thermal runaway: (a) SEM of cathode materials before thermal runaway; (b) SEM of residual cathode after thermal runaway; (c) SEM of vent particles; (d) EDS of element analysis on the cathode before and after thermal runaway; (e) XRD of vent particles and cathode materials after thermal runaway
圖 9 熱失控蔓延中電池的噴發特征。(1a)1#電池,0 s;(1b)1#電池,154 s;(1c)1#電池,161 s;(1d)1#電池,0 s;(1e)1#電池,154 s;(1f)1#電池,161 s;(2a)2#電池,212 s;(2b) 2#電池,218 s;(3a)3#電池,274 s;(3b)2#電池,280 s;(4a)4#電池,380 s;(4b)4#電池,393 s
Figure 9. Vent characteristics in thermal runaway propagation: (1a)1# Cell,0 s;(1b) 1# Cell,154 s;(1c) 1# Cell,161 s;(1d)1# Cell,0 s;(1e) 1# Cell,154 s;(1f) 1# Cell,161 s;(2a)2# Cell,212 s;(2b) 2# Cell,218 s;(3a)3# Cell,274 s;(3b) 2# Cell,280 s;(4a)4# Cell,380 s;(4b) 4# Cell,393 s
圖 15 電池之間傳熱熱阻分布情況[35]
Figure 15. Distribution of thermal resistance between cells
圖 16 熱失控蔓延至不同階段時相鄰電池內放的溫度分布情況[36]. (a)i#電池失控達到最高溫度; (b)i#電池加熱(i+1)#電池; (c)(i+1)#電池達到熱失控觸發溫度TTR-ARC; (d)(i+1)#電池失控達到最高溫度
Figure 16. Temperature distribution of adjacent batteries in different stages of thermal runaway propagation: (a) the maximum temperature of i# in TR; (b) i# heats (i+1) #; (c) the temperature of (i+1) #reachs to TTR-ARC; (d) the temperature of (i+1) #reachs to Tmax
www.77susu.com -
參考文獻
[1] General Office of the State Council of the People’s Republic of China. Development Plan of New Energy Automobile Industry (2021—2035)[EB/OL]. www.gov.cn (2020-11-02)[2020-10-20]. http://www.gov.cn/zhengce/content/2020-11/02/content_5556716.htm國務院辦公廳. 新能源汽車產業發展規劃(2021—2035年)[EB/OL]. 中國政府網 (2020-11-02) [2020-10-20]. http://www.gov.cn/zhengce/content/2020-11/02/content_5556716.htm [2] Mao B B, Huang P F, Chen H D, et al. Self-heating reaction and thermal runaway criticality of the lithiumion battery. Int J Heat Mass Transfer, 2020, 149: 119178 doi: 10.1016/j.ijheatmasstransfer.2019.119178 [3] Wang S, Du Z M, Zhang Z L, et al. Research progress on safety of lithium-ion batteries. Chin J Eng, 2018, 40(8): 901王爽, 杜志明, 張澤林, 等. 鋰離子電池安全性研究進展. 工程科學學報, 2018, 40(8):901 [4] Fergus J W. Recent developments in cathode materials for lithium ion batteries. J Power Sources, 2010, 195(4): 939 doi: 10.1016/j.jpowsour.2009.08.089 [5] Sun Y X, Zhou Y, Shen Y, et al. Lithium rich ternary cathode materials for dynamical type lithium ion battery. Chemistry, 2017, 80(1): 34孫艷霞, 周園, 申月, 等. 動力型鋰離子電池富鋰三元正極材料研究進展. 化學通報, 2017, 80(1):34 [6] Wang Y P, Hu S W, Cao F. Research prospect of cathode materials for lithium ion battery. Power Technol, 2017, 41(4): 638 doi: 10.3969/j.issn.1002-087X.2017.04.043王亞平, 胡淑婉, 曹峰. 鋰離子電池正極材料研究進展. 電源技術, 2017, 41(4):638 doi: 10.3969/j.issn.1002-087X.2017.04.043 [7] Feng X N, Zheng S Q, Ren D S, et al. Investigating the thermal runaway mechanisms of lithium-ion batteries based on thermal analysis database. Appl Energy, 2019, 246: 53 doi: 10.1016/j.apenergy.2019.04.009 [8] Feng X N, Ouyang M G, Liu X, et al. Thermal runaway mechanism of lithium ion battery for electric vehicles: A review. Energy Storage Mater, 2018, 10: 246 [9] Huang P F, Ping P, Li K, et al. Experimental and modeling analysis of thermal runaway propagation over the large format energy storage battery module with Li4Ti5O12 anode. Appl Energy, 2016, 183: 659 doi: 10.1016/j.apenergy.2016.08.160 [10] B?rger A, Mertens J, Wenzl H. Thermal runaway and thermal runaway propagation in batteries: What do we talk about? J Energy Storage, 2019, 24: 100649 doi: 10.1016/j.est.2019.01.012 [11] Lopez C F, Jeevarajan J A, Mukherjee P P. Experimental analysis of thermal runaway and propagation in lithium-ion battery modules. J Electrochem Soc, 2015, 162(9): A1905 doi: 10.1149/2.0921509jes [12] Gao S, Lu L G, Ouyang M G, et al. Experimental study on module-to-module thermal runaway-propagation in a battery pack. J Electrochem Soc, 2019, 166(10): A2065 [13] Jiang Z Y, Qu Z G, Zhang J F, et al. Rapid prediction method for thermal runaway propagation in battery pack based on lumped thermal resistance network and electric circuit analogy. Appl Energy, 2020, 268: 115007 doi: 10.1016/j.apenergy.2020.115007 [14] Feng X N, Fang M, He X M, et al. Thermal runaway features of large format prismatic lithium ion battery using extended volume accelerating rate calorimetry. J Power Sources, 2014, 255: 294 [15] Spotnitz R, Franklin J. Abuse behavior of high-power, lithium-ion cells. J Power Sources, 2003, 113(1): 81 doi: 10.1016/S0378-7753(02)00488-3 [16] Richard M N, Dahn J R. Accelerating rate calorimetry study on the thermal stability of lithium intercalated graphite in electrolyte. I. Experimental. J Electrochem Soc, 1999, 146(6): 2068 doi: 10.1149/1.1391893 [17] Venugopal G. Characterization of thermal cut-off mechanisms in prismatic lithium-ion batteries. J Power Sources, 2001, 101(2): 231 doi: 10.1016/S0378-7753(01)00782-0 [18] Wang H Y, Tang A D, Huang K L. Oxygen evolution in overcharged LixNi1/3Co1/3Mn1/3O2 electrode and its thermal analysis kinetics. Chin J Chem, 2011, 29(8): 1583 [19] Zhang Y J, Wang H W, Li W F, et al. Quantitative identification of emissions from abused prismatic Ni-rich lithium-ion batteries. eTransportation, 2019, 2: 100031 doi: 10.1016/j.etran.2019.100031 [20] Larsson F, Bertilsson S, Furlani M, et al. Gas explosions and thermal runaways during external heating abuse of commercial lithium-ion graphite-LiCoO2 cells at different levels of ageing. J Power Sources, 2018, 373: 220 doi: 10.1016/j.jpowsour.2017.10.085 [21] Peng Y, Yang L Z, Ju X Y, et al. A comprehensive investigation on the thermal and toxic hazards of large format lithium-ion batteries with LiFePO4 cathode. J Hazard Mater, 2020, 381: 120916 [22] Li H, Duan Q L, Zhao C P, et al. Experimental investigation on the thermal runaway and its propagation in the large format battery module with Li(Ni1/3Co1/3Mn1/3)O2 as cathode. J Hazard Mater, 2019, 375: 241 doi: 10.1016/j.jhazmat.2019.03.116 [23] Wang H B, Du Z M, Rui X Y, et al. A comparative analysis on thermal runaway behavior of Li (NixCoyMnz) O2 battery with different nickel contents at cell and module level. J Hazard Mater, 2020, 393: 122361 doi: 10.1016/j.jhazmat.2020.122361 [24] Wilke S, Schweitzer B, Khateeb S, et al. Preventing thermal runaway propagation in lithium ion battery packs using a phase change composite material: An experimental study. J Power Sources, 2017, 340: 51 doi: 10.1016/j.jpowsour.2016.11.018 [25] Yuan C C, Wang Q S, Wang Y, et al. Inhibition effect of different interstitial materials on thermal runaway propagation in the cylindrical lithium-ion battery module. Appl Therm Eng, 2019, 153: 39 doi: 10.1016/j.applthermaleng.2019.02.127 [26] Tao C F, Li G Y, Zhao J B, et al. The investigation of thermal runaway propagation of lithium-ion batteries under different vertical distances. J Therm Anal Calorim, 2020, 142(4): 1523 doi: 10.1007/s10973-020-09274-x [27] Wang Z, Wang J. Investigation of external heating-induced failure propagation behaviors in large-size cell modules with different phase change materials. Energy, 2020, 204: 117946 [28] Niu H C, Chen C X, Ji D, et al. Thermal-runaway propagation over a linear cylindrical battery module. Fire Technol, 2020, 56(6): 2491 doi: 10.1007/s10694-020-00976-0 [29] Wang H B, Du Z M, Liu L, et al. Study on the thermal runaway and its propagation of lithium-ion batteries under low pressure. Fire Technol, 2020, 56(6): 2427 doi: 10.1007/s10694-020-00963-5 [30] Huang Z H, Zhao C P, Li H, et al. Experimental study on thermal runaway and its propagation in the large format lithium ion battery module with two electrical connection modes. Energy, 2020, 205: 117906 doi: 10.1016/j.energy.2020.117906 [31] Feng X N. Thermal Runaway Initiation and Propagation of Lithium-Ion Traction Battery for Electric Vehicle: test, Modeling and Prevention [Dissertation]. Beijing: Tsinghua University, 2016馮旭寧. 車用鋰離子動力電池熱失控誘發與擴展機理、建模與防控[學位論文]. 北京: 清華大學, 2016 [32] Mao B B, Chen H D, Cui Z X, et al. Failure mechanism of the lithium ion battery during nail penetration. Int J Heat Mass Transfer, 2018, 122: 1103 doi: 10.1016/j.ijheatmasstransfer.2018.02.036 [33] Feng X N, Ren D S, He X M, et al. Mitigating thermal runaway of lithium-ion batteries. Joule, 2020, 4(4): 743 [34] Wang Q S, Mao B B, Stoliarov S I, et al. A review of lithium ion battery failure mechanisms and fire prevention strategies. Prog Energy Combust Sci, 2019, 73: 95 doi: 10.1016/j.pecs.2019.03.002 [35] Liu X, Ren D S, Hsu H, et al. Thermal runaway of lithium-ion batteries without internal short circuit. Joule, 2018, 2(10): 2047 doi: 10.1016/j.joule.2018.06.015 [36] Feng X N, Sun J, Ouyang M G, et al. Characterization of penetration induced thermal runaway propagation process within a large format lithium ion battery module. J Power Sources, 2015, 275: 261 doi: 10.1016/j.jpowsour.2014.11.017 -