<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

四足機器人軟硬地面穩定過渡的腿部主動變剛度調節策略

劉帥 趙慧 劉清宇

劉帥, 趙慧, 劉清宇. 四足機器人軟硬地面穩定過渡的腿部主動變剛度調節策略[J]. 工程科學學報, 2022, 44(3): 420-429. doi: 10.13374/j.issn2095-9389.2020.10.23.001
引用本文: 劉帥, 趙慧, 劉清宇. 四足機器人軟硬地面穩定過渡的腿部主動變剛度調節策略[J]. 工程科學學報, 2022, 44(3): 420-429. doi: 10.13374/j.issn2095-9389.2020.10.23.001
LIU Shuai, ZHAO Hui, LIU Qing-yu. Active and variable stiffness adjustment strategy for legs of quadruped robot for stable transition between soft and hard ground[J]. Chinese Journal of Engineering, 2022, 44(3): 420-429. doi: 10.13374/j.issn2095-9389.2020.10.23.001
Citation: LIU Shuai, ZHAO Hui, LIU Qing-yu. Active and variable stiffness adjustment strategy for legs of quadruped robot for stable transition between soft and hard ground[J]. Chinese Journal of Engineering, 2022, 44(3): 420-429. doi: 10.13374/j.issn2095-9389.2020.10.23.001

四足機器人軟硬地面穩定過渡的腿部主動變剛度調節策略

doi: 10.13374/j.issn2095-9389.2020.10.23.001
基金項目: 國家自然科學基金資助項目(51805381)
詳細信息
    通訊作者:

    E-mail: liuqingyu@wust.edu.cn

  • 中圖分類號: TP242.6

Active and variable stiffness adjustment strategy for legs of quadruped robot for stable transition between soft and hard ground

More Information
  • 摘要: 針對四足機器人在變剛度地面環境下動態行進時易出現姿態不穩定的問題,本文提出了一種機器人腿部主動變剛度實時調節策略,該策略根據機器人著地后的機身和腿部的運動狀態實時估計出著地腿和地面的耦合剛度,并將前后腿與地面耦合剛度的差值補償到相應的著地腿上。該策略能夠使機器人著地后迅速適應不同剛度特性的地面,特別是地面剛度相差較大的情況。通過搭建Simulink-SimMechanics仿真平臺,對角腿在同一剛度地面和變剛度地面兩種不同的著地環境,對僅利用常規姿態反饋控制、腿部主動變剛度調節策略與常規姿態反饋控制聯合方式進行了對比實驗。結果表明,通過腿部主動變剛度調節策略的作用,四足機器人在軟硬地面過渡時實現對機身俯仰角和滾轉角的補償修正,調控效果優于單獨通過常規姿態反饋控制。

     

  • 圖  1  在變剛度地面上的姿態偏轉

    Figure  1.  Attitude deflection on the ground with variable stiffness

    圖  2  各腿序號

    Figure  2.  Serial number of each leg

    圖  3  單腿示意圖

    Figure  3.  Diagram of one leg

    圖  4  四足機器人騰空相控制

    Figure  4.  Control of the quadruped robot in flight phase

    圖  5  四足機器人著地相控制

    Figure  5.  Control of the quadruped robot on the ground

    圖  6  三維實體模型

    Figure  6.  Three-dimensional solid model

    圖  7  仿真視頻截圖

    Figure  7.  Screenshot of the simulation video

    圖  8  腿部狀態. (a) 腿1、2狀態; (b) 腿3、4狀態

    Figure  8.  State of each leg: (a) states of the first and second legs; (b) states of the third and fourth legs

    圖  9  機身側向運動. (a) 機身側向位移; (b) 機身滾轉角; (c) 機身滾轉角速度

    Figure  9.  Lateral movement of the fuselage: (a) lateral displacement of the fuselage; (b) roll angle of the fuselage; (c) roll angular velocity of the fuselage

    圖  10  機身俯仰運動. (a) 機身俯仰角; (b) 機身俯仰角速度

    Figure  10.  Pitching motion of the fuselage: (a) pitch angle of the fuselage; (b) pitch angular velocity of the fuselage

    圖  11  變剛度地面下單獨采用cAFC的仿真視頻截圖

    Figure  11.  Simulation video screenshot of the cAFC alone under the ground with variable stiffness

    圖  12  變剛度地面下cAFC與aVSL聯合作用的仿真視頻截圖

    Figure  12.  Simulation video screenshot of the combined action of cAFC and aVSL under the ground with variable stiffness

    圖  13  變剛度地面下的側向運動. (a) 變剛度地面下的側向位移; (b) 變剛度地面下的機身滾轉角; (c) 變剛度地面下的機身滾轉角速度

    Figure  13.  Lateral motion under the ground with variable stiffness: (a) lateral displacement under the ground with variable stiffness; (b) roll angle under the ground with variable stiffness; (c) roll angular velocity under the ground with variable stiffness

    圖  14  變剛度地面下的機身俯仰運動. (a) 變剛度地面下的機身俯仰角; (b) 變剛度地面下的機身俯仰角速度

    Figure  14.  Pitching motion under the ground with variable stiffness: (a) pitch angle under the ground with variable stiffness; (b) pitch angular velocity under the ground with variable stiffness

    表  1  模型的重要參數

    Table  1.   Important parameters of the model

    ParametersValue
    Length, width, and height of the fuselage/m0.35、0.18、0.03
    Weight/kg5.103
    Thigh length/m0.16
    Calf length/m0.16
    Acceleration of gravity/(m?s?2)9.80665
    Original length of equivalent leg / m0.2771
    Initial angle of swing joint (rad)0
    Initial angle of hip joint / rad?π/6
    Initial angle of knee joint / radπ/3
    Initial horizontal speed of the fuselage / (m?s?1)1
    Initial height of the fuselage / m0.3
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Gao Z H, Shi Q, Fukuda T, et al. An overview of biomimetic robots with animal behaviors. Neurocomputing, 2019, 332: 339 doi: 10.1016/j.neucom.2018.12.071
    [2] Wang X X. Development and Experiment of a Novel Quadruped Robot with Electric Drive [Dissertation]. Shanghai: Shanghai University, 2016

    王興興. 新型電驅式四足機器人研制與測試. 上海: 上海大學, 2016
    [3] Hooks J, Ahn M S, Yu J, et al. ALPHRED: A multi-modal operations quadruped robot for package delivery applications. IEEE Robotics Autom Lett, 2020, 5(4): 5409 doi: 10.1109/LRA.2020.3007482
    [4] Guizzo E, Ackerman E. $74, 500 will fetch you a spot: For the price of a luxury car, you can now buy a very smart, very capable, very yellow robot dog. IEEE Spectr, 2020, 57(8): 11 doi: 10.1109/MSPEC.2020.9150543
    [5] Blickhan R. The spring-mass model for running and hopping. J Biomech, 1989, 22(11): 1217
    [6] Ferris D P, Farley C T. Interaction of leg stiffness and surface stiffness during human hopping. J Appl Physiol, 1997, 82(1): 15 doi: 10.1152/jappl.1997.82.1.15
    [7] Ferris D P, Louie M, Farley C T. Running in the real world: adjusting leg stiffness for different surfaces. Proc R Soc B:Biol Sci, 1998, 265(1400): 989 doi: 10.1098/rspb.1998.0388
    [8] Galloway K C, Clark J E, Yim M, et al. Experimental investigations into the role of passive variable compliant legs for dynamic robotic locomotion // 2011 IEEE International Conference on Robotics and Automation. Shanghai, 2011: 1243
    [9] Galloway K C, Clark J E, Koditschek D E. Variable stiffness legs for robust, efficient, and stable dynamic running. J Mech Robotics, 2013, 5(1): 011009 doi: 10.1115/1.4007843
    [10] Koco E, Mutka A, Kovacic Z. New variable passive-compliant element design for quadruped adaptation to stiffness-varying terrain. Int J Adv Robotic Syst, 2016, 13(3): 90 doi: 10.5772/63893
    [11] Christie M D, Sun S, Ning D H, et al. A highly stiffness-adjustable robot leg for enhancing locomotive performance. Mech Syst Signal Process, 2019, 126: 458 doi: 10.1016/j.ymssp.2019.02.043
    [12] Zhang X J, Sun L Y, Liu W Y, et al. Trotting control strategy of variable stiffness quadruped robot. Comput Integr Manuf Syst, 2019, 25(2): 439

    張小俊, 孫凌宇, 劉文義, 等. 可變剛度四足機器人對角小跑控制策略. 計算機集成制造系統, 2019, 25(2):439
    [13] Park J, Park J H. Impedance control of quadruped robot and its impedance characteristic modulation for trotting on irregular terrain // 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. Vilamoura, 2012: 175
    [14] Xu K, Wang S K, Yue B K, et al. Adaptive impedance control with variable target stiffness for wheel-legged robot on complex unknown terrain. Mechatronics, 2020, 69: 102388 doi: 10.1016/j.mechatronics.2020.102388
    [15] Bosworth W, Whitney J, Kim S, et al. Robot locomotion on hard and soft ground: Measuring stability and ground properties in situ // 2016 IEEE International Conference on Robotics and Automation (ICRA). Stockholm, 2016: 3582
    [16] Bosworth W. Perception and Control of Robot Legged Locomotion over Variable Terrain [Dissertation]. Cambridge: Massachusetts Institute of Technology, 2016
    [17] Miller B D, Cartes D, Clark J E. Leg stiffness adaptation for running on unknown terrains // 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems. Tokyo, 2013: 5108
    [18] Bednarek J, Bednarek M, Wellhausen L, et al. What am I touching? Learning to classify terrain via haptic sensing // 2019 International Conference on Robotics and Automation (ICRA). Montreal, 2019: 7187
    [19] Vukobratovi? M, Borovac B. Zero-moment point—thirty five years of its life. Int J Human Robot, 2004, 1(1): 157 doi: 10.1142/S0219843604000083
    [20] Zhou K, Li C, Li C, et al. Motion planning method for quadruped robots walking on unknown rough terrain. J Mech Eng, 2020, 56(2): 210 doi: 10.3901/JME.2020.02.210

    周坤, 李川, 李超, 等. 面向未知復雜地形的四足機器人運動規劃方法. 機械工程學報, 2020, 56(2):210 doi: 10.3901/JME.2020.02.210
    [21] Ngamkajornwiwat P, Homchanthanakul J, Teerakittikul P, et al. Bio-inspired adaptive locomotion control system for online adaptation of a walking robot on complex terrains. IEEE Access, 2020, 8: 91587 doi: 10.1109/ACCESS.2020.2992794
    [22] Wei Z, Song G M, Sun H Y, et al. Kinematic modeling and trotting gait planning for the quadruped robot with an active spine. J Southeast Univ (Nat Sci Ed), 2019, 49(6): 1019 doi: 10.3969/j.issn.1001-0505.2019.06.001

    韋中, 宋光明, 孫慧玉, 等. 脊柱型四足機器人運動學建模及對角小跑步態規劃. 東南大學學報(自然科學版), 2019, 49(6):1019 doi: 10.3969/j.issn.1001-0505.2019.06.001
    [23] Wei Z, Song G M, Qiao G F, et al. Trotting locomotion control for quadruped robot with active spine over rough deformable terrain. J Southeast Univ (Nat Sci Ed), 2020, 50(2): 385 doi: 10.3969/j.issn.1001-0505.2020.02.024

    韋中, 宋光明, 喬貴方, 等. 脊柱型四足機器人粗糙可變地形對角小跑運動控制. 東南大學學報(自然科學版), 2020, 50(2):385 doi: 10.3969/j.issn.1001-0505.2020.02.024
    [24] Machairas K, Papadopoulos E. An active compliance controller for quadruped trotting // 24th Mediterranean Conference on Control and Automation (MED). Athens, 2016: 743
    [25] Ding C, Zhou L L, Li Y B, et al. A novel dynamic locomotion control method for quadruped robots running on rough terrains. IEEE Access, 2020, 8: 150435 doi: 10.1109/ACCESS.2020.3016312
    [26] Zhang G T, Rong X W, Li Y B, et al. Control of the quadrupedal trotting based on virtual model. Robot, 2016, 38(1): 64

    張國騰, 榮學文, 李貽斌, 等. 基于虛擬模型的四足機器人對角小跑步態控制方法. 機器人, 2016, 38(1):64
    [27] Xie H X, Shang J Z, Luo Z R, et al. Body rolling analysis and attitude control of a quadruped robot during trotting. Robot, 2014, 36(6): 676

    謝惠祥, 尚建忠, 羅自榮, 等. 四足機器人對角小跑中機體翻轉分析與姿態控制. 機器人, 2014, 36(6):676
    [28] Raibert M H. Legged Robots That Balance. Cambridge: The MIT Press, 1986
  • 加載中
圖(14) / 表(1)
計量
  • 文章訪問數:  1156
  • HTML全文瀏覽量:  545
  • PDF下載量:  126
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-10-23
  • 網絡出版日期:  2021-01-13
  • 刊出日期:  2022-01-08

目錄

    /

    返回文章
    返回