<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

基于NARX動態神經網絡的鋰離子電池剩余壽命間接預測

魏孟 王橋 葉敏 李嘉波 徐信芯

魏孟, 王橋, 葉敏, 李嘉波, 徐信芯. 基于NARX動態神經網絡的鋰離子電池剩余壽命間接預測[J]. 工程科學學報, 2022, 44(3): 380-388. doi: 10.13374/j.issn2095-9389.2020.10.22.005
引用本文: 魏孟, 王橋, 葉敏, 李嘉波, 徐信芯. 基于NARX動態神經網絡的鋰離子電池剩余壽命間接預測[J]. 工程科學學報, 2022, 44(3): 380-388. doi: 10.13374/j.issn2095-9389.2020.10.22.005
WEI Meng, WANG Qiao, YE Min, LI Jia-bo, XU Xin-xin. An indirect remaining useful life prediction of lithium-ion batteries based on a NARX dynamic neural network[J]. Chinese Journal of Engineering, 2022, 44(3): 380-388. doi: 10.13374/j.issn2095-9389.2020.10.22.005
Citation: WEI Meng, WANG Qiao, YE Min, LI Jia-bo, XU Xin-xin. An indirect remaining useful life prediction of lithium-ion batteries based on a NARX dynamic neural network[J]. Chinese Journal of Engineering, 2022, 44(3): 380-388. doi: 10.13374/j.issn2095-9389.2020.10.22.005

基于NARX動態神經網絡的鋰離子電池剩余壽命間接預測

doi: 10.13374/j.issn2095-9389.2020.10.22.005
基金項目: 國家自然科學基金青年基金資助項目(51805041);河南省重大科技專項資助項目(191110211500);中央高校基金優秀博士論文基金資助項目(300203211251)
詳細信息
    通訊作者:

    E-mail: mingye@chd.edu.cn

  • 中圖分類號: TM911.3

An indirect remaining useful life prediction of lithium-ion batteries based on a NARX dynamic neural network

More Information
  • 摘要: 鋰離子電池的直接健康因子難以實現在線測量,針對此問題,提出一種基于動態神經網絡時間序列的鋰離子電池剩余壽命(Remaining useful life, RUL)間接預測方法。首先根據鋰離子電池的放電數據,提出放電截止時間,恒流放電時間以及放電峰值溫度時間三種間接健康因子并進行灰色關聯分析(Grey relation analysis, GRA)。然后,基于非線性自回歸(Nonlinear autoregressive models with exogenous inputs, NARX)動態神經網絡建立鋰離子電池RUL預測模型。最后將粒子群優化前饋神經網絡(Back propagation neural network based on particle swarm optimization, BPNN-PSO),最小二乘支持向量機(Least square support vector machine, LS-SVM),極限學習機(extreme learning machine, ELM),閉環(Closed-loop)NARX和開環(Open-loop)NARX進行對比分析,驗證了所提方法的優越性。

     

  • 圖  1  容量衰退曲線

    Figure  1.  Capacity fade of each battery

    圖  2  放電電壓曲線(No.5)

    Figure  2.  Discharge voltage with different cycles (No.5)

    圖  3  放電電流曲線(No.5)

    Figure  3.  Discharge current with different cycles (No.5)

    圖  4  放電溫度曲線(No.5)

    Figure  4.  Discharge temperature with different cycles (No.5)

    圖  5  Closed-loop NARX神經網絡結構圖

    Figure  5.  Structure of the closed-loop NARX dynamic neural network

    圖  6  NARX動態神經網絡的鋰離子電池間接剩余壽命預測

    Figure  6.  Schematic diagram of the NARX dynamic neural network for RUL prediction

    圖  7  動態神經網絡預測結果(No.5)

    Figure  7.  RUL prediction based on NARX of No.5

    圖  8  動態神經網絡預測結果(No.6)

    Figure  8.  RUL prediction based on NARX of No.6

    圖  9  動態神經網絡預測結果(No.7)

    Figure  9.  RUL prediction based on NARX of No.7

    圖  10  動態神經網絡預測結果(60 cycle)

    Figure  10.  RUL prediction based on NARX (60 cycle)

    圖  11  動態神經網絡預測結果(70 cycle)

    Figure  11.  RUL prediction based on NARX (70 cycle)

    圖  12  剩余壽命預測結果(No.5)

    Figure  12.  Result of RUL prediction (No.5)

    圖  13  剩余壽命預測誤差(No.5)

    Figure  13.  Error of RUL prediction (No.5)

    圖  14  剩余壽命預測結果(No.6)

    Figure  14.  Result of RUL prediction (No.6)

    圖  15  剩余壽命預測誤差(No.6)

    Figure  15.  Error of RUL prediction (No.6)

    圖  16  剩余壽命預測結果(No.7)

    Figure  16.  Result of RUL prediction (No.7)

    圖  17  剩余壽命預測誤差(No.7)

    Figure  17.  Error of RUL prediction (No.7)

    表  1  灰色關聯度分析結果

    Table  1.   Result of GRA

    Indirect health indicatorsBattery No.5Battery No.6Battery No.7
    Discharge voltage cut-off interval0.89550.92360.9784
    Constant current discharge interval0.90820.91720.9645
    Discharge peak temperature interval0.88870.92480.9789
    下載: 導出CSV

    表  2  鋰離子電池剩余壽命預測評價指標

    Table  2.   Predication performance of RUL

    MethodsBatteriesRMSE/%MAPE/%MAE/%
    BPNN-PSONo.52.171.211.62
    No.62.311.181.59
    No.71.920.981.45
    LS-SVMNo.51.671.111.05
    No.62.071.141.49
    No.72.211.271.70
    ELMNo.52.161.131.52
    No.62.071.141.49
    No.71.971.051.56
    Closed-loop NARXNo.51.440.410.66
    No.61.380.610.83
    No.71.420.741.11
    Open-loop NARXNo.51.240.350.51
    No.61.020.350.51
    No.71.190.420.65
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Guo P Y, Cheng Z, Yang L. A data-driven remaining capacity estimation approach for lithium-ion batteries based on charging health feature extraction. J Power Sources, 2019, 412: 442 doi: 10.1016/j.jpowsour.2018.11.072
    [2] Tian H X, Qin P L, Li K, et al. A review of the state of health for lithium-ion batteries: Research status and suggestions. J Clean Prod, 2020, 261: 120813 doi: 10.1016/j.jclepro.2020.120813
    [3] Xiong R, Zhang Y Z, Wang J, et al. Lithium-ion battery health prognosis based on a real battery management system used in electric vehicles. IEEE Trans Veh Technol, 2019, 68(5): 4110 doi: 10.1109/TVT.2018.2864688
    [4] Xue Q, Shen S Q, Li G, et al. Remaining useful life prediction for lithium-ion batteries based on capacity estimation and box-cox transformation. IEEE Trans Veh Technol, 2020, 69(12): 14765 doi: 10.1109/TVT.2020.3039553
    [5] Jiao Z Q, Fan X M, Zhang X, et al. State tracking and remaining useful life predictive method of Li-ion battery based on improved particle filter algorithm. Trans China Electrotech Soc, 2020, 35(18): 3979

    焦自權, 范興明, 張鑫, 等. 基于改進粒子濾波算法的鋰離子電池狀態跟蹤與剩余使用壽命預測方法. 電工技術學報, 2020, 35(18):3979
    [6] Zhang J H, Li Q, Chen D P, et al. Real-time states Co-estimation algorithm for Li-ion power batteries based on fast square-root unscented kalman filters. Chin J Eng, 2021, 43(7): 976

    章軍輝, 李慶, 陳大鵬, 等. 基于快速SR-UKF的鋰離子動力電池SOC聯合估計. 工程科學學報, 2021, 43(7):976
    [7] Harper G, Sommerville R, Kendrick E, et al. Recycling lithium-ion batteries from electric vehicles. Nature, 2019, 575(7781): 75 doi: 10.1038/s41586-019-1682-5
    [8] ?eruga D, Gosar A, Sweeney C A, et al. Continuous modelling of cyclic ageing for lithium-ion batteries. Energy, 2021, 215: 119079 doi: 10.1016/j.energy.2020.119079
    [9] Wu Y T, Xue Q, Shen J W, et al. State of health estimation for lithium-ion batteries based on healthy features and long short-term memory. IEEE Access, 2020, 8: 28533 doi: 10.1109/ACCESS.2020.2972344
    [10] Tian J Q, Xu R L, Wang Y J, et al. Capacity attenuation mechanism modeling and health assessment of lithium-ion batteries. Energy, 2021, 221: 119682 doi: 10.1016/j.energy.2020.119682
    [11] Jia J F, Liang J Y, Shi Y H, et al. SOH and RUL prediction of lithium-ion batteries based on Gaussian process regression with indirect health indicators. Energies, 2020, 13(2): 375 doi: 10.3390/en13020375
    [12] Yang W S, Yao Q F, Ye K J, et al. Empirical mode decomposition and temporal convolutional networks for remaining useful life estimation. Int J Parallel Program, 2020, 48(1): 61 doi: 10.1007/s10766-019-00650-1
    [13] Li L B, Ji L, Zhu Y Z, et al. Investigation of RUL prediction of lithium-ion battery equivalent cycle battery pack. Chin J Eng, 2020, 42(6): 796

    李練兵, 季亮, 祝亞尊, 等. 等效循環電池組剩余使用壽命預測. 工程科學學報, 2020, 42(6):796
    [14] Ma Y, Chen Y, Zhang F, et al. Remaining useful life prediction of power battery based on extend h particle filter algorithm. J Mech Eng, 2019, 55(20): 36

    馬彥, 陳陽, 張帆, 等. 基于擴展H粒子濾波算法的動力電池壽命預測方法. 機械工程學報, 2019, 55(20):36
    [15] Li Y X, Liu S J, Gao S B, et al. Prediction of lithium-ion battery's remaining useful life based on Wiener process. J Dalian Univ Technol, 2017, 57(2): 126 doi: 10.7511/dllgxb201702003

    李玥鋅, 劉淑杰, 高斯博, 等. 基于維納過程的鋰離子電池剩余壽命預測. 大連理工大學學報, 2017, 57(2):126 doi: 10.7511/dllgxb201702003
    [16] Lyu C, Lai Q Z, Ge T F, et al. A lead-acid battery's remaining useful life prediction by using electrochemical model in the Particle Filtering framework. Energy, 2017, 120: 975 doi: 10.1016/j.energy.2016.12.004
    [17] Lin H L, Li S. Remaining useful life prediction of the lithium-ion batteries based on particle filter algorithm. Sci Technol Eng, 2017, 17(29): 296 doi: 10.3969/j.issn.1671-1815.2017.29.043

    林慧龍, 李賽. 基于粒子濾波的鋰離子電池剩余使用壽命預測. 科學技術與工程, 2017, 17(29):296 doi: 10.3969/j.issn.1671-1815.2017.29.043
    [18] Xian W M, Long B, Li M, et al. Prognostics of lithium-ion batteries based on the verhulst model, particle swarm optimization and particle filter. IEEE Trans Instrum Meas, 2014, 63(1): 2 doi: 10.1109/TIM.2013.2276473
    [19] Qu J, Zhao X H, Gan W. The remaining life prediction model of lithium battery based on wavelet noise reduction and support vector machine. Mach Des Manuf Eng, 2020, 49(1): 81

    曲杰, 趙小涵, 甘偉. 基于小波降噪-支持矢量機的鋰離子電池剩余使用壽命預測模型. 機械設計與制造工程, 2020, 49(1):81
    [20] Wu J, Zhang C B, Chen Z H. An online method for lithium-ion battery remaining useful life estimation using importance sampling and neural networks. Appl Energy, 2016, 173: 134 doi: 10.1016/j.apenergy.2016.04.057
    [21] Wang X C, Zhao J, Li Q Q, et al. A hybrid model for prediction in asphalt pavement performance based on support vector machine and grey relation analysis. J Adv Transp, 2020, 2020: 1
    [22] Chen Z W, Li F S, Lin Y, et al. Indirect prediction method of RUL for lithium-ion battery based on GA-ELM. Acta Metrol Sin, 2020, 41(6): 735 doi: 10.3969/j.issn.1000-1158.2020.06.17

    陳則王, 李福勝, 林婭, 等. 基于GA-ELM的鋰離子電池RUL間接預測方法. 計量學報, 2020, 41(6):735 doi: 10.3969/j.issn.1000-1158.2020.06.17
    [23] Zhou Y P, Huang M H. Lithium-ion batteries remaining useful life prediction based on a mixture of empirical mode decomposition and ARIMA model. Microelectron Reliab, 2016, 65: 265 doi: 10.1016/j.microrel.2016.07.151
    [24] Liu D T, Luo Y, Liu J, et al. Lithium-ion battery remaining useful life estimation based on fusion nonlinear degradation AR model and RPF algorithm. Neural Comput Appl, 2014, 25(3-4): 557 doi: 10.1007/s00521-013-1520-x
    [25] Saha B, Goebel K. Battery data set: NASA ames prognostics data repository [DB/OL]. NASA Ames Research Center (2007)[2020-10-22].https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository
    [26] Pang X Q, Wang Z Q, Zeng J C, et al. Prediction for the remaining useful life of lithium-ion battery based on PCA-NARX. Trans Beijing Inst Technol, 2019, 39(4): 406

    龐曉瓊, 王竹晴, 曾建潮, 等. 基于PCA-NARX的鋰離子電池剩余使用壽命預測. 北京理工大學學報, 2019, 39(4):406
  • 加載中
圖(17) / 表(2)
計量
  • 文章訪問數:  1986
  • HTML全文瀏覽量:  686
  • PDF下載量:  126
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-10-22
  • 網絡出版日期:  2021-02-02
  • 刊出日期:  2022-01-08

目錄

    /

    返回文章
    返回