Effect of C2H6、C2H4、CO and H2 on the explosion pressure and kinetic characteristics of methane
-
摘要: 為量化可燃氣體爆燃引起的潛在危險性提供相關的基礎數據,設計出在氣體燃料加工、儲存和運輸過程中能夠承受爆炸危險的容器。運用20 L球形氣體爆炸系統,在不同初始溫度(298~373 K)與不同的預混氣體(CO、H2、C2H4、C2H6)體積分數(0.4%~2.0%)條件下,獲取了甲烷體積分數為7%與11%的甲烷?空氣混合物的爆炸壓力特性參數。此外,采用 CHEMKIN軟件,模擬分析了不同體積分數的預混氣體在爆炸過程中H·、O· 和·OH自由基摩爾分數的變化趨勢,并進行了敏感性分析。結果表明,同一體積分數的預混氣體,隨初始溫度的增加,最大爆炸壓力呈線性降低,最大爆炸壓力上升速率幾乎恒定或下降。同一初始溫度,對于甲烷體積分數為7%的甲烷?空氣混合物,隨著預混氣體的體積分數增大到2%,其最大爆炸壓力、最大爆炸壓力上升速率均呈增大的趨勢,而甲烷體積分數為11%的甲烷?空氣混合物對應的最大爆炸壓力與最大爆炸壓力上升速率均呈減小趨勢。隨著預混氣體體積分數的增加,甲烷體積分數為7%的甲烷?空氣混合物在爆炸過程中H·、O·和·OH自由基摩爾分數峰值上升。O·和·OH自由基摩爾分數峰值在甲烷體積分數為11%的甲烷?空氣混合物中呈下降趨勢,H·自由基摩爾分數峰值有所上升。對于甲烷體積分數為7%與11%的甲烷?空氣混合物,其影響甲烷的關鍵基元反應式不變,敏感性系數隨預混氣體體積分數的增加而減弱。Abstract: The gas composition of spontaneous coal combustion in a high-temperature mine fire area is extremely complex. Due to the low-temperature oxidation or pyrolysis of coal, a variety of combustible and explosive gases are produced, such as CH4, CO, H2, C2H6, C2H4, C3H8, and C2H2. The paper provided associated basic data to quantify potential hazards caused by flammable gases and design containers that can withstand explosion during gas fuel processing, storage, and transportation. Under different initial temperatures (298–373 K) and varying volume fractions of the premixed gases (CO, H2, C2H4, and C2H6: 0.4%–2.0%), when volume fraction of methane is 7% and 11%, the explosion pressure characteristic parameters were obtained in a 20 L spherical gas explosion system. In addition, the change in trend of the mole fraction of H·, O·, and OH radicals of the gas mixture during the explosion process was analyzed and simulated. Sensitivity analysis was performed using the CHEMKIN software. Results show that at the same volume fractions of the premixed gases, the maximum explosion pressure linearly decreases with increasing initial temperature and the maximum pressure rise rate is almost constant or slightly decreasing. At the same initial temperature, when volume fraction of methane is 7%, as the volume fractions of the premixed gases increases to 2%, the maximum explosion pressure and the maximum pressure rise rate show an increasing trend. However, a decreasing trend is observed with 11% methane–air mixture. When volume fraction of methane is 7%, with the increased gas mixture volume fraction, the maximum mole fraction of the free radicals, H·, O·, and ·OH increases. When volume fraction of methane is 11%, the maximum mole fraction of O· and ·OH radicals indicated a downward trend, whereas that of the H· radical increases with increase in volume fractions of the premixed gases. When volume fraction of methane is 7% and 11%, chemical kinetics analysis revealed that the addition of premixed gases had little effect on the key elementary reactions. Moreover, the sensitivity coefficient of CH4 decreases with increase in volume fractions of the premixed gases.
-
圖 8 加入不同體積分數的預混氣體后,甲烷體積分數為7%的甲烷?空氣混合物敏感性系數的變化趨勢。(a)0%; (b)0.4%; (c)0.8%; (d)1.2%; (e)1.6%; (f)2.0%
Figure 8. Variation in trend of the sensitivity coefficient of the key step response when adding premixedgases with different volume fractions to 7% volume fraction of CH4: (a)0%; (b)0.4%; (c)0.8%; (d)1.2%; (e)1.6%; (f)2.0%
圖 9 加入不同體積分數的預混氣體后,甲烷體積分數為7%的甲烷?空氣混合物敏感性系數的變化趨勢。(a)0%; (b)0.4%; (c)0.8%; (d)1.2%;(e)1.6%; (f)2.0%
Figure 9. Variation in trend of the sensitivity coefficient of the key step response when adding premixedgases with different volume fractions to 11% volume fraction of CH4: (a)0%; (b)0.4%; (c)0.8%; (d)1.2%; (e)1.6%; (f)2.0%
表 1 初始模擬計算條件
Table 1. Initial conditions for simulation
Sample CH4 O2 N2 Volume fraction/% C2H6∶C2H4∶CO∶H2=1∶1∶5∶1 C2H6 C2H4 CO H2 1 7 19.53 73.47 0 0 0 0 2 19.45 73.15 0.05 0.05 0.25 0.05 3 19.36 72.84 0.1 0.1 0.5 0.1 4 19.28 72.52 0.15 0.15 0.75 0.15 5 19.19 72.21 0.2 0.2 1 0.2 6 19.11 71.89 0.25 0.25 1.25 0.25 7 11 18.69 70.31 0 0 0 0 8 18.61 69.99 0.05 0.05 0.25 0.05 9 18.52 69.68 0.1 0.1 0.5 0.1 10 18.44 69.36 0.15 0.15 0.75 0.15 11 18.35 69.05 0.2 0.2 1 0.2 12 18.27 68.73 0.25 0.25 1.25 0.25 表 2 甲烷爆炸鏈式反應中部分關鍵基元反應
Table 2. Some key elementary reactions in the methane explosion chain reaction
Number Key elementary reactions R11 O·+CH4$ \Leftrightarrow $·OH + CH3· R32 O2+CH2O$ \Leftrightarrow $HO2+HCO R38 H·+ O2$ \Leftrightarrow $O·+·OH R53 H·+CH4$ \Leftrightarrow $CH3·+H2 R98 ·OH+CH4$ \Leftrightarrow $CH3·+H2O R119 ·HO2+CH3·$ \Leftrightarrow $·OH+CH3O· R155 CH3·+O2$ \Leftrightarrow $O·+CH3O· R156 CH3·+O2$ \Leftrightarrow $·OH+CH2O· R158 CH3·+CH3·(+M)$ \Leftrightarrow $C2H6(+M) R161 CH3+CH2O$ \Leftrightarrow $HCO+CH4 R170 CH3O+O2$ \Leftrightarrow $HO2+CH2O www.77susu.com -
參考文獻
[1] Li Z J. Research status of low concentration coal mine methane utilization technology and application prospect. China Energy Environ Prot, 2018, 40(6): 152李中軍. 低濃度煤層氣利用技術研究現狀及應用展望. 能源與環保, 2018, 40(6):152 [2] Zhao J Y, Zhang Y L, Deng J, et al. Key functional groups affecting the release of gaseous products during spontaneous combustion of coal. Chin J Eng, 2020, 42(9): 1139趙婧昱, 張永利, 鄧軍, 等. 影響煤自燃氣體產物釋放的主要活性官能團. 工程科學學報, 2020, 42(9):1139 [3] Liu Y, Zhang Y G, Zhao D F, et al. Experimental study on explosion characteristics of hydrogen–propane mixtures. Int J Hydrogen Energy, 2019, 44(40): 22712 doi: 10.1016/j.ijhydene.2019.03.064 [4] Wang T, Luo Z M, Wen H, et al. The explosion enhancement of methane-air mixtures by ethylene in a confined chamber. Energy, 2021, 214: 119042 doi: 10.1016/j.energy.2020.119042 [5] Razus D, Brinzea V, Mitu M, et al. Temperature and pressure influence on explosion pressures of closed vessel propane – air deflagrations. J Hazard Mater, 2010, 174(1-3): 548 doi: 10.1016/j.jhazmat.2009.09.086 [6] Li D, Zhang Q, Ma Q J, et al. Comparison of explosion characteristics between hydrogen / air and methane / air at the stoichiometric concentrations. Int J Hydrogen Energy, 2015, 40(28): 8761 doi: 10.1016/j.ijhydene.2015.05.038 [7] Zhang L, Wei X L, Yu L X, et al. Deflagration characteristics of a preheated CO-air mixture in a duct. Explos Shock Waves, 2010, 30(2): 191 doi: 10.11883/1001-1455(2010)02-0191-06張良, 魏小林, 余立新, 等. 管道內一氧化碳和空氣預熱混合物的爆燃特性. 爆炸與沖擊, 2010, 30(2):191 doi: 10.11883/1001-1455(2010)02-0191-06 [8] Gao N, Zhang Y S, Hu Y T, et al. Experimental study on methane-air mixtures explosion limits at normal and elevated initial temperatures and pressures. Explos Shock Waves, 2017, 37(3): 4538高娜, 張延松, 胡毅亭, 等. 溫度、壓力對甲烷-空氣混合物爆炸極限耦合影響的實驗研究. 爆炸與沖擊, 2017, 37(3):4538 [9] Li R Z, Huang Z C, Si R J. Influence of environmental temperature on gas explosion pressure and its rise rate. Explos Shock Waves, 2013, 33(4): 415 doi: 10.3969/j.issn.1001-1455.2013.04.013李潤之, 黃子超, 司榮軍. 環境溫度對瓦斯爆炸壓力及壓力上升速率的影響. 爆炸與沖擊, 2013, 33(4):415 doi: 10.3969/j.issn.1001-1455.2013.04.013 [10] Yu M G, Wan S J, Xu Y L, et al. Suppressing methane explosion overpressure using a charged water mist containing a NaCl additive. J Nat Gas Sci Eng, 2016, 29: 21 doi: 10.1016/j.jngse.2015.12.040 [11] Luo Z M, Su Y, Chen X K, et al. Effect of BC powder on hydrogen/methane/air premixed gas deflagration. Fuel, 2019, 257: 116095 doi: 10.1016/j.fuel.2019.116095 [12] Yu M G, Wang X Y, Zheng K, et al. Investigation of methane/air explosion suppression by modified montmorillonite inhibitor. Process Saf Environ Prot, 2020, 144: 337 doi: 10.1016/j.psep.2020.07.050 [13] Mitu M, Brandes E. Influence of pressure, temperature and vessel volume on explosion characteristics of ethanol / air mixtures in closed spherical vessels. Fuel, 2017, 203: 460 doi: 10.1016/j.fuel.2017.04.124 [14] Qi S, Du Y, Zhang P L, et al. Effects of concentration, temperature, humidity, and nitrogen inert dilution on the gasoline vapor explosion. J Hazard Mater, 2017, 323: 593 doi: 10.1016/j.jhazmat.2016.06.040 [15] Luo Z M, Liu L T, Cheng F M, et al. Effects of a carbon monoxide-dominant gas mixture on the explosion and flame propagation behaviors of methane in air. J Loss Prev Process Ind, 2019, 58: 8 doi: 10.1016/j.jlp.2019.01.004 [16] Wang T, Zhou Y, Luo Z M, et al. Flammability limits behavior of methane with the addition of gaseous fuel at various relative humidities. Process Saf Environ Prot, 2020, 140: 178 doi: 10.1016/j.psep.2020.05.005 [17] Su B, Luo Z M, Wang T, et al. Chemical kinetic behaviors at the chain initiation stage of CH4/H2/air mixture. J Hazard Mater, 2021, 403: 123680 doi: 10.1016/j.jhazmat.2020.123680 [18] Luo Z M, Liu L T. Impact of the various other inflammable gases on the explosion features of low concentration methane. J Saf Environ, 2019, 19(1): 167羅振敏, 劉利濤. 以氫氣為主要成分的其他可燃氣體對低濃度甲烷爆炸特性的影響. 安全與環境學報, 2019, 19(1): 167 [19] Luo Z M, Deng J, Guo X B. Microcosmic mechanism of gas explosion based on Gaussian. J Liaoning Tech Univ Nat Sci, 2008, 27(3): 325 doi: 10.3969/j.issn.1008-0562.2008.03.002羅振敏, 鄧軍, 郭曉波. 基于 Gaussian 的瓦斯爆炸微觀反應機理. 遼寧工程技術大學學報(自然科學版), 2008, 27(3):325 doi: 10.3969/j.issn.1008-0562.2008.03.002 [20] Liang Y T, Wang L C, Luo H Z, et al. Computational model of reaction kinetic for gas explosion induced by shock wave. J China Coal Soc, 2017, 42(6): 1475梁運濤, 王連聰, 羅海珠, 等. 激波誘導瓦斯爆炸反應動力學計算模型. 煤炭學報, 2017, 42(6):1475 [21] Liang Y T, Wang L C, Luo H Z, et al. Computational model of reaction kinetic for gas explosion in constant volume combustion reactor. J China Coal Soc, 2015, 40(8): 1853梁運濤, 王連聰, 羅海珠, 等. 定容燃燒反應器中瓦斯爆炸反應動力學計算模型. 煤炭學報, 2015, 40(8):1853 [22] Wang L C, Luo H Z, Liang Y T. Effects of water on reaction kinetic for gas explosion in shock tube. J China Coal Soc, 2014, 39(10): 2037王連聰, 羅海珠, 梁運濤. 激波管中水對瓦斯爆炸反應動力學特性的影響. 煤炭學報, 2014, 39(10):2037 [23] Li X C, Nie B S, Yang C L, et al. Effect of gas concentration on kinetic characteristics of gas explosion in confined space. Chin J High Pressure Phys, 2017, 31(2): 135 doi: 10.11858/gywlxb.2017.02.005李祥春, 聶百勝, 楊春麗, 等. 封閉空間內瓦斯濃度對瓦斯爆炸反應動力學特性的影響. 高壓物理學報, 2017, 31(2):135 doi: 10.11858/gywlxb.2017.02.005 [24] Luo Z M, Hao Q Q, Wang T, et al. Experimental study on the deflagration characteristics of methane-ethane mixtures in a closed duct. Fuel, 2020, 259: 116295 doi: 10.1016/j.fuel.2019.116295 [25] Varghese R J, Kolekar H, Kishore V R, et al. Measurement of laminar burning velocities of methane-air mixtures simultaneously at elevated pressures and elevated temperatures. Fuel, 2019, 257: 116120 doi: 10.1016/j.fuel.2019.116120 [26] Rozenchan G, Zhu D L, Law C K, et al. Outward propagation, burning velocities, and chemical effects of methane flames up to 60 atm. Proc Combust Inst, 2002, 29(2): 1461 doi: 10.1016/S1540-7489(02)80179-1 -