<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

C2H6、C2H4、CO與H2對甲烷爆炸壓力及動力學特性影響

羅振敏 劉利濤 王濤 張江 程方明

羅振敏, 劉利濤, 王濤, 張江, 程方明. C2H6、C2H4、CO與H2對甲烷爆炸壓力及動力學特性影響[J]. 工程科學學報, 2022, 44(3): 339-347. doi: 10.13374/j.issn2095-9389.2020.10.22.002
引用本文: 羅振敏, 劉利濤, 王濤, 張江, 程方明. C2H6、C2H4、CO與H2對甲烷爆炸壓力及動力學特性影響[J]. 工程科學學報, 2022, 44(3): 339-347. doi: 10.13374/j.issn2095-9389.2020.10.22.002
LUO Zhen-min, LIU Li-tao, WANG Tao, ZHANG Jiang, CHENG Fang-ming. Effect of C2H6、C2H4、CO and H2 on the explosion pressure and kinetic characteristics of methane[J]. Chinese Journal of Engineering, 2022, 44(3): 339-347. doi: 10.13374/j.issn2095-9389.2020.10.22.002
Citation: LUO Zhen-min, LIU Li-tao, WANG Tao, ZHANG Jiang, CHENG Fang-ming. Effect of C2H6、C2H4、CO and H2 on the explosion pressure and kinetic characteristics of methane[J]. Chinese Journal of Engineering, 2022, 44(3): 339-347. doi: 10.13374/j.issn2095-9389.2020.10.22.002

C2H6、C2H4、CO與H2對甲烷爆炸壓力及動力學特性影響

doi: 10.13374/j.issn2095-9389.2020.10.22.002
基金項目: 國家自然科學基金資助項目(51674193);陜西省創新能力支撐計劃資助項目(2020TD-021)
詳細信息
    通訊作者:

    E-mail: zmluo@xust.edu.cn

  • 中圖分類號: TD712.7

Effect of C2H6、C2H4、CO and H2 on the explosion pressure and kinetic characteristics of methane

More Information
  • 摘要: 為量化可燃氣體爆燃引起的潛在危險性提供相關的基礎數據,設計出在氣體燃料加工、儲存和運輸過程中能夠承受爆炸危險的容器。運用20 L球形氣體爆炸系統,在不同初始溫度(298~373 K)與不同的預混氣體(CO、H2、C2H4、C2H6)體積分數(0.4%~2.0%)條件下,獲取了甲烷體積分數為7%與11%的甲烷?空氣混合物的爆炸壓力特性參數。此外,采用 CHEMKIN軟件,模擬分析了不同體積分數的預混氣體在爆炸過程中H·、O· 和·OH自由基摩爾分數的變化趨勢,并進行了敏感性分析。結果表明,同一體積分數的預混氣體,隨初始溫度的增加,最大爆炸壓力呈線性降低,最大爆炸壓力上升速率幾乎恒定或下降。同一初始溫度,對于甲烷體積分數為7%的甲烷?空氣混合物,隨著預混氣體的體積分數增大到2%,其最大爆炸壓力、最大爆炸壓力上升速率均呈增大的趨勢,而甲烷體積分數為11%的甲烷?空氣混合物對應的最大爆炸壓力與最大爆炸壓力上升速率均呈減小趨勢。隨著預混氣體體積分數的增加,甲烷體積分數為7%的甲烷?空氣混合物在爆炸過程中H·、O·和·OH自由基摩爾分數峰值上升。O·和·OH自由基摩爾分數峰值在甲烷體積分數為11%的甲烷?空氣混合物中呈下降趨勢,H·自由基摩爾分數峰值有所上升。對于甲烷體積分數為7%與11%的甲烷?空氣混合物,其影響甲烷的關鍵基元反應式不變,敏感性系數隨預混氣體體積分數的增加而減弱。

     

  • 圖  1  20 L球形氣體爆炸試驗系統示意圖

    Figure  1.  Schematic of the 20 L spherical gas explosion experimental setup

    圖  2  初始溫度對預混氣體最大爆炸壓力的影響。(a)甲烷體積分數為7%;(b)甲烷體積分數為11%

    Figure  2.  Maximum explosion pressure of premixed gases versus the initial temperature: (a) volume fraction of CH4 is 7%; (b) volume fraction of CH4 is 11%

    圖  3  初始溫度對預混氣體最大爆炸壓力上升速率的影響。(a)甲烷體積分數為7%;(b)甲烷體積分數為11%

    Figure  3.  Maximum pressure rise rate of premixed gases versus the initial temperature: (a) volume fraction of CH4 is 7%; (b) volume fraction of CH4 is 11%

    圖  4  不同體積分數的預混氣體對甲烷最大爆炸壓力的影響。(a)甲烷體積分數為7%;(b)甲烷體積分數為11%

    Figure  4.  Maximum explosion pressure of CH4–air mixture versus the volume fraction of the mixed gas: (a) volume fraction of CH4 is 7%; (b) volume fraction of CH4 is 11%

    圖  5  不同體積分數的預混氣體對甲烷最大爆炸壓力上升速率的影響。(a)甲烷體積分數為7%;(b)甲烷體積分數為11%

    Figure  5.  Maximum pressure rise rate of CH4–air mixture versus the volume fraction of the mixed gas: (a) volume fraction of CH4 is 7%; (b) volume fraction of CH4 is 11%

    圖  6  甲烷最大爆炸壓力試驗值和計算值的比較。(a)甲烷體積分數為7%;(b)甲烷體積分數為11%

    Figure  6.  Comparison between the predicted and experimental values:(a) volume fraction of CH4 is 7%; (b) volume fraction of CH4 is 11%

    圖  7  不同甲烷體積分數下各自由基最大摩爾分數隨預混氣體體積分數的變化曲線。(a)甲烷體積分數為7%;(b)甲烷體積分數為11%

    Figure  7.  Variation in the maximum molar fractions of free radicals with other combustible gas volume fractions under different volume fractions of CH4:(a) volume fraction of CH4 is 7%; (b) volume fraction of CH4 is 11%

    圖  8  加入不同體積分數的預混氣體后,甲烷體積分數為7%的甲烷?空氣混合物敏感性系數的變化趨勢。(a)0%; (b)0.4%; (c)0.8%; (d)1.2%; (e)1.6%; (f)2.0%

    Figure  8.  Variation in trend of the sensitivity coefficient of the key step response when adding premixedgases with different volume fractions to 7% volume fraction of CH4: (a)0%; (b)0.4%; (c)0.8%; (d)1.2%; (e)1.6%; (f)2.0%

    圖  9  加入不同體積分數的預混氣體后,甲烷體積分數為7%的甲烷?空氣混合物敏感性系數的變化趨勢。(a)0%; (b)0.4%; (c)0.8%; (d)1.2%;(e)1.6%; (f)2.0%

    Figure  9.  Variation in trend of the sensitivity coefficient of the key step response when adding premixedgases with different volume fractions to 11% volume fraction of CH4: (a)0%; (b)0.4%; (c)0.8%; (d)1.2%; (e)1.6%; (f)2.0%

    表  1  初始模擬計算條件

    Table  1.   Initial conditions for simulation

    SampleCH4O2N2Volume fraction/%
    C2H6∶C2H4∶CO∶H2=1∶1∶5∶1
    C2H6C2H4COH2
    1 7 19.53 73.47 0 0 0 0
    2 19.45 73.15 0.05 0.05 0.25 0.05
    3 19.36 72.84 0.1 0.1 0.5 0.1
    4 19.28 72.52 0.15 0.15 0.75 0.15
    5 19.19 72.21 0.2 0.2 1 0.2
    6 19.11 71.89 0.25 0.25 1.25 0.25
    7 11 18.69 70.31 0 0 0 0
    8 18.61 69.99 0.05 0.05 0.25 0.05
    9 18.52 69.68 0.1 0.1 0.5 0.1
    10 18.44 69.36 0.15 0.15 0.75 0.15
    11 18.35 69.05 0.2 0.2 1 0.2
    12 18.27 68.73 0.25 0.25 1.25 0.25
    下載: 導出CSV

    表  2  甲烷爆炸鏈式反應中部分關鍵基元反應

    Table  2.   Some key elementary reactions in the methane explosion chain reaction

    NumberKey elementary reactions
    R11O·+CH4$ \Leftrightarrow $·OH + CH3·
    R32O2+CH2O$ \Leftrightarrow $HO2+HCO
    R38H·+ O2$ \Leftrightarrow $O·+·OH
    R53H·+CH4$ \Leftrightarrow $CH3·+H2
    R98·OH+CH4$ \Leftrightarrow $CH3·+H2O
    R119·HO2+CH3·$ \Leftrightarrow $·OH+CH3
    R155CH3·+O2$ \Leftrightarrow $O·+CH3
    R156CH3·+O2$ \Leftrightarrow $·OH+CH2
    R158CH3·+CH3·(+M)$ \Leftrightarrow $C2H6(+M)
    R161CH3+CH2O$ \Leftrightarrow $HCO+CH4
    R170CH3O+O2$ \Leftrightarrow $HO2+CH2O
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Li Z J. Research status of low concentration coal mine methane utilization technology and application prospect. China Energy Environ Prot, 2018, 40(6): 152

    李中軍. 低濃度煤層氣利用技術研究現狀及應用展望. 能源與環保, 2018, 40(6):152
    [2] Zhao J Y, Zhang Y L, Deng J, et al. Key functional groups affecting the release of gaseous products during spontaneous combustion of coal. Chin J Eng, 2020, 42(9): 1139

    趙婧昱, 張永利, 鄧軍, 等. 影響煤自燃氣體產物釋放的主要活性官能團. 工程科學學報, 2020, 42(9):1139
    [3] Liu Y, Zhang Y G, Zhao D F, et al. Experimental study on explosion characteristics of hydrogen–propane mixtures. Int J Hydrogen Energy, 2019, 44(40): 22712 doi: 10.1016/j.ijhydene.2019.03.064
    [4] Wang T, Luo Z M, Wen H, et al. The explosion enhancement of methane-air mixtures by ethylene in a confined chamber. Energy, 2021, 214: 119042 doi: 10.1016/j.energy.2020.119042
    [5] Razus D, Brinzea V, Mitu M, et al. Temperature and pressure influence on explosion pressures of closed vessel propane – air deflagrations. J Hazard Mater, 2010, 174(1-3): 548 doi: 10.1016/j.jhazmat.2009.09.086
    [6] Li D, Zhang Q, Ma Q J, et al. Comparison of explosion characteristics between hydrogen / air and methane / air at the stoichiometric concentrations. Int J Hydrogen Energy, 2015, 40(28): 8761 doi: 10.1016/j.ijhydene.2015.05.038
    [7] Zhang L, Wei X L, Yu L X, et al. Deflagration characteristics of a preheated CO-air mixture in a duct. Explos Shock Waves, 2010, 30(2): 191 doi: 10.11883/1001-1455(2010)02-0191-06

    張良, 魏小林, 余立新, 等. 管道內一氧化碳和空氣預熱混合物的爆燃特性. 爆炸與沖擊, 2010, 30(2):191 doi: 10.11883/1001-1455(2010)02-0191-06
    [8] Gao N, Zhang Y S, Hu Y T, et al. Experimental study on methane-air mixtures explosion limits at normal and elevated initial temperatures and pressures. Explos Shock Waves, 2017, 37(3): 4538

    高娜, 張延松, 胡毅亭, 等. 溫度、壓力對甲烷-空氣混合物爆炸極限耦合影響的實驗研究. 爆炸與沖擊, 2017, 37(3):4538
    [9] Li R Z, Huang Z C, Si R J. Influence of environmental temperature on gas explosion pressure and its rise rate. Explos Shock Waves, 2013, 33(4): 415 doi: 10.3969/j.issn.1001-1455.2013.04.013

    李潤之, 黃子超, 司榮軍. 環境溫度對瓦斯爆炸壓力及壓力上升速率的影響. 爆炸與沖擊, 2013, 33(4):415 doi: 10.3969/j.issn.1001-1455.2013.04.013
    [10] Yu M G, Wan S J, Xu Y L, et al. Suppressing methane explosion overpressure using a charged water mist containing a NaCl additive. J Nat Gas Sci Eng, 2016, 29: 21 doi: 10.1016/j.jngse.2015.12.040
    [11] Luo Z M, Su Y, Chen X K, et al. Effect of BC powder on hydrogen/methane/air premixed gas deflagration. Fuel, 2019, 257: 116095 doi: 10.1016/j.fuel.2019.116095
    [12] Yu M G, Wang X Y, Zheng K, et al. Investigation of methane/air explosion suppression by modified montmorillonite inhibitor. Process Saf Environ Prot, 2020, 144: 337 doi: 10.1016/j.psep.2020.07.050
    [13] Mitu M, Brandes E. Influence of pressure, temperature and vessel volume on explosion characteristics of ethanol / air mixtures in closed spherical vessels. Fuel, 2017, 203: 460 doi: 10.1016/j.fuel.2017.04.124
    [14] Qi S, Du Y, Zhang P L, et al. Effects of concentration, temperature, humidity, and nitrogen inert dilution on the gasoline vapor explosion. J Hazard Mater, 2017, 323: 593 doi: 10.1016/j.jhazmat.2016.06.040
    [15] Luo Z M, Liu L T, Cheng F M, et al. Effects of a carbon monoxide-dominant gas mixture on the explosion and flame propagation behaviors of methane in air. J Loss Prev Process Ind, 2019, 58: 8 doi: 10.1016/j.jlp.2019.01.004
    [16] Wang T, Zhou Y, Luo Z M, et al. Flammability limits behavior of methane with the addition of gaseous fuel at various relative humidities. Process Saf Environ Prot, 2020, 140: 178 doi: 10.1016/j.psep.2020.05.005
    [17] Su B, Luo Z M, Wang T, et al. Chemical kinetic behaviors at the chain initiation stage of CH4/H2/air mixture. J Hazard Mater, 2021, 403: 123680 doi: 10.1016/j.jhazmat.2020.123680
    [18] Luo Z M, Liu L T. Impact of the various other inflammable gases on the explosion features of low concentration methane. J Saf Environ, 2019, 19(1): 167

    羅振敏, 劉利濤. 以氫氣為主要成分的其他可燃氣體對低濃度甲烷爆炸特性的影響. 安全與環境學報, 2019, 19(1): 167
    [19] Luo Z M, Deng J, Guo X B. Microcosmic mechanism of gas explosion based on Gaussian. J Liaoning Tech Univ Nat Sci, 2008, 27(3): 325 doi: 10.3969/j.issn.1008-0562.2008.03.002

    羅振敏, 鄧軍, 郭曉波. 基于 Gaussian 的瓦斯爆炸微觀反應機理. 遼寧工程技術大學學報(自然科學版), 2008, 27(3):325 doi: 10.3969/j.issn.1008-0562.2008.03.002
    [20] Liang Y T, Wang L C, Luo H Z, et al. Computational model of reaction kinetic for gas explosion induced by shock wave. J China Coal Soc, 2017, 42(6): 1475

    梁運濤, 王連聰, 羅海珠, 等. 激波誘導瓦斯爆炸反應動力學計算模型. 煤炭學報, 2017, 42(6):1475
    [21] Liang Y T, Wang L C, Luo H Z, et al. Computational model of reaction kinetic for gas explosion in constant volume combustion reactor. J China Coal Soc, 2015, 40(8): 1853

    梁運濤, 王連聰, 羅海珠, 等. 定容燃燒反應器中瓦斯爆炸反應動力學計算模型. 煤炭學報, 2015, 40(8):1853
    [22] Wang L C, Luo H Z, Liang Y T. Effects of water on reaction kinetic for gas explosion in shock tube. J China Coal Soc, 2014, 39(10): 2037

    王連聰, 羅海珠, 梁運濤. 激波管中水對瓦斯爆炸反應動力學特性的影響. 煤炭學報, 2014, 39(10):2037
    [23] Li X C, Nie B S, Yang C L, et al. Effect of gas concentration on kinetic characteristics of gas explosion in confined space. Chin J High Pressure Phys, 2017, 31(2): 135 doi: 10.11858/gywlxb.2017.02.005

    李祥春, 聶百勝, 楊春麗, 等. 封閉空間內瓦斯濃度對瓦斯爆炸反應動力學特性的影響. 高壓物理學報, 2017, 31(2):135 doi: 10.11858/gywlxb.2017.02.005
    [24] Luo Z M, Hao Q Q, Wang T, et al. Experimental study on the deflagration characteristics of methane-ethane mixtures in a closed duct. Fuel, 2020, 259: 116295 doi: 10.1016/j.fuel.2019.116295
    [25] Varghese R J, Kolekar H, Kishore V R, et al. Measurement of laminar burning velocities of methane-air mixtures simultaneously at elevated pressures and elevated temperatures. Fuel, 2019, 257: 116120 doi: 10.1016/j.fuel.2019.116120
    [26] Rozenchan G, Zhu D L, Law C K, et al. Outward propagation, burning velocities, and chemical effects of methane flames up to 60 atm. Proc Combust Inst, 2002, 29(2): 1461 doi: 10.1016/S1540-7489(02)80179-1
  • 加載中
圖(9) / 表(2)
計量
  • 文章訪問數:  4163
  • HTML全文瀏覽量:  435
  • PDF下載量:  68
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-10-22
  • 網絡出版日期:  2020-12-22
  • 刊出日期:  2022-01-08

目錄

    /

    返回文章
    返回