-
摘要: 首先介紹了高熵合金的理論基礎。然后從不同的熱噴涂工藝出發,綜述了等離子噴涂、超音速火焰噴涂、高速電弧噴涂、冷噴涂四種技術在制備高熵合金涂層上的研究發展現狀,重點從原料選用、制備工藝優化、性能研究、后處理工藝等方面對以上四種熱噴涂技術制備高熵合金涂層的研究進行系統地歸納與總結。最后提出現有制備高熵合金涂層的熱噴涂技術較少、熱噴涂材料受限、高熵合金設計盲目這三個問題,針對性地提出了在優化已有技術的基礎上開發新技術;開發高熵陶瓷、高熵非晶合金、高熵復合材料等新型熱噴涂材料;沿用材料基因組理念建立高熵合金數據庫這三點熱噴涂制備高熵合金涂層在未來的發展趨勢。Abstract: In the 1990s, Ye, a scholar from China, broke the routine with a creative idea of the concept of high entropy alloys (HEAs). Since then, new alloys, which breached the traditional concept of “primary component”, have caught great attention of scientists at home and abroad. Due to their excellent properties such as high hardness, strength, wear resistance, corrosion resistance, thermal resistance, and irradiation resistance, HEAs have been considered as a new generation of thermal spray materials with immense potential for industrial applications. Previous studies show similar or even better properties of HEA coatings compared to those of the HEA block. The preparation of the coatings has become the key point since then. Spraying is one of the common methods on preparing HEA coatings, including conventional methods such as plasma spraying, supersonic flame spraying, high-velocity arc spraying, and cold spraying. With their own advantages and disadvantages, appropriate spraying methods and parameters should be selected according to different matrix and spraying materials, which will be discussed in this paper. First, the theoretical basis of the HEAs were introduced. Next, starting from different thermal spraying processes, the research and development status of plasma spraying, supersonic flame spraying, high-velocity arc spraying, and cold spraying on the preparation of HEA coatings were reviewed. Raw material selection, preparation process optimization, performance research, coating post-treatment, and other aspects of the above four thermal spraying techniques to prepare HEA coatings were systematically summarized. Finally, the three problems of limited existing thermal spraying techniques for preparing HEA coatings, limited thermal spraying materials, and aimless design of HEA coatings were proposed. Moreover, three future development issues of new thermal spraying techniques and optimization of existing techniques were discussed along with the development of high entropy ceramics, high entropy amorphous alloys, high entropy composite materials, and other new thermal spray materials. Finally, an HEA database was established to prepare HEA coatings using the concept of material genome to solve the three problems.
-
圖 4 涂層X射線衍射圖譜[35]。(a)噴涂后涂層;(b)后處理后涂層
Figure 4. XRD patterns of the coatings: (a) as-sprayed coating; (b) postprocessing coating
www.77susu.com -
參考文獻
[1] Zuo T T, Gao M C, Ouyang L Z, et al. Tailoring magnetic behavior of CoFeMnNiX (X=Al, Cr, Ga, and Sn) high entropy alloys by metal doping. Acta Mater, 2017, 130: 10 doi: 10.1016/j.actamat.2017.03.013 [2] Li Z, Bai G H, Liu X G, et al. Tuning phase constitution and magnetic properties by composition in FeCoNiAlMn high-entropy alloys. J Alloys Compd, 2020, 845: 156204 doi: 10.1016/j.jallcom.2020.156204 [3] Huang S, Li W, Li X Q, et al. Mechanism of magnetic transition in FeCrCoNi-based high entropy alloys. Mater Des, 2016, 103: 71 doi: 10.1016/j.matdes.2016.04.053 [4] Nagase T, Anada S, Rack P D, et al. MeV electron-irradiation-induced structural change in the bcc phase of Zr–Hf–Nb alloy with an approximately equiatomic ratio. Intermetallics, 2013, 38: 70 doi: 10.1016/j.intermet.2013.02.009 [5] Kim J, Lim J W, Kim J K, et al. Suppressed radiation-induced dynamic recrystallization in CrFeCoNiCu high-entropy alloy. Scripta Mater, 2021, 190: 158 doi: 10.1016/j.scriptamat.2020.08.045 [6] Guo H X, He C Y, Qiu X L, et al. A novel multilayer high temperature colored solar absorber coating based on high-entropy alloy MoNbHfZrTi: Optimized preparation and chromaticity investigation. Sol Energy Mater Sol Cells, 2020, 209: 110444 doi: 10.1016/j.solmat.2020.110444 [7] Vrtnik S, Ko?elj P, Meden A, et al. Superconductivity in thermally annealed Ta–Nb–Hf–Zr–Ti high-entropy alloys. J Alloys Compd, 2017, 695: 3530 doi: 10.1016/j.jallcom.2016.11.417 [8] Shen H H, Hu J T, Li P C, et al. Compositional dependence of hydrogenation performance of Ti?Zr?Hf?Mo?Nb high-entropy alloys for hydrogen/tritium storage. J Mater Sci Technol, 2020, 55: 116 doi: 10.1016/j.jmst.2019.08.060 [9] Wei Y G, Guo G, Li J, et al. Application of refractory high entropy alloys on aero-engines. J Aeron Mater, 2019, 39(5): 82 doi: 10.11868/j.issn.1005-5053.2019.000023魏耀光, 郭剛, 李靜, 等. 難熔高熵合金在航空發動機上的應用. 航空材料學報, 2019, 39(5):82 doi: 10.11868/j.issn.1005-5053.2019.000023 [10] Waseem O A, Ryu H J. Combinatorial development of the low-density high-entropy alloy Al10Cr20Mo20Nb20Ti20Zr10 having gigapascal strength at 1000 ℃. J Alloys Compd, 2020, 845: 155700 doi: 10.1016/j.jallcom.2020.155700 [11] Nagase T, Iijima Y, Matsugaki A, et al. Design and fabrication of Ti?Zr?Hf?Cr?Mo and Ti?Zr?Hf?Co?Cr?Mo high-entropy alloys as metallic biomaterials. Mater Sci Eng C, 2020, 107: 110322 doi: 10.1016/j.msec.2019.110322 [12] Gurel S, Yagci M B, Bal B, et al. Corrosion behavior of novel titanium-based high entropy alloys designed for medical implants. Mater Chem Phys, 2020, 254: 123377 doi: 10.1016/j.matchemphys.2020.123377 [13] Li Y G, Li R, Peng Q. Enhanced surface bombardment resistance of the CoNiCrFeMn high entropy alloy under extreme irradiation flux. Nanotechnology, 2020, 31(2): 025703 doi: 10.1088/1361-6528/ab473f [14] Xing Q W, Ma J, Wang C, et al. High-throughput screening solar-thermal conversion films in a pseudobinary (Cr, Fe, V)?(Ta, W) system. ACS Comb Sci, 2018, 20(11): 602 doi: 10.1021/acscombsci.8b00055 [15] Khan N A, Akhavan B, Zhou C F, et al. High entropy nitride (HEN) thin films of AlCoCrCu0.5FeNi deposited by reactive magnetron sputtering. Surf Coat Technol, 2020, 402: 126327 doi: 10.1016/j.surfcoat.2020.126327 [16] Wang J J, Kuang S F, Yu X, et al. Tribo-mechanical properties of CrNbTiMoZr high-entropy alloy film synthesized by direct current magnetron sputtering. Surf Coat Technol, 2020, 403: 126374 doi: 10.1016/j.surfcoat.2020.126374 [17] Medina L Z, Riekehr L, Jansson U. Phase formation in magnetron sputtered CrMnFeCoNi high entropy alloy. Surf Coat Technol, 2020, 403: 126323 doi: 10.1016/j.surfcoat.2020.126323 [18] Zeng Q F, Xu Y T. A comparative study on the tribocorrosion behaviors of AlFeCrNiMo high entropy alloy coatings and 304 stainless steel. Mater Today Commun, 2020, 24: 101261 doi: 10.1016/j.mtcomm.2020.101261 [19] Yin D Q, Liang G B, Fan S, et al. Ultrasonic cavitation erosion behavior of AlCoCrxCuFe high entropy alloy coatings synthesized by laser cladding. Materials, 2020, 13(18): 4067 doi: 10.3390/ma13184067 [20] Wen X, Cui X F, Jin G, et al. Design and characterization of FeCrCoAlMn0.5Mo0.1 high-entropy alloy coating by ultrasonic assisted laser cladding. J Alloys Compd, 2020, 835: 155449 doi: 10.1016/j.jallcom.2020.155449 [21] Huang P K, Yeh J W, Shun T T, et al. Multi-principal-element alloys with improved oxidation and wear resistance for thermal spray coating. Adv Eng Mater, 2004, 6(1-2): 74 [22] Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater, 2004, 6(5): 299 doi: 10.1002/adem.200300567 [23] Senkov O N, Wilks G B, Miracle D B, et al. Refractory high-entropy alloys. Intermetallics, 2010, 18(9): 1758 doi: 10.1016/j.intermet.2010.05.014 [24] Joshi S. Special Issue: advances in thermal spray technology. Materials, 2020, 13(16): 3521 doi: 10.3390/ma13163521 [25] Mohanty S, Maity T N, Mukhopadhyay S, et al. Powder metallurgical processing of equiatomic AlCoCrFeNi high entropy alloy: Microstructure and mechanical properties. Mater Sci Eng A, 2017, 679: 299 doi: 10.1016/j.msea.2016.09.062 [26] He C J, Liu X J, Zhang P, et al. Applications of powder metallurgy technology in high-entropy materials. Chin J Eng, 2019, 41(12): 1501何春靜, 劉雄軍, 張盼, 等. 粉末冶金在高熵材料中的應用. 工程科學學報, 2019, 41(12):1501 [27] Ji W, Wang W M, Wang H, et al. Alloying behavior and novel properties of CoCrFeNiMn high-entropy alloy fabricated by mechanical alloying and spark plasma sintering. Intermetallics, 2015, 56: 24 doi: 10.1016/j.intermet.2014.08.008 [28] L?bel M, Lindner T, Kohrt C, et al. Processing of AlCoCrFeNiTi high entropy alloy by atmospheric plasma spraying. IOP Conf Ser Mater Sci Eng, 2017, 181: 012015 doi: 10.1088/1757-899X/181/1/012015 [29] Liu W H, He J Y, Huang H L, et al. Effects of Nb additions on the microstructure and mechanical property of CoCrFeNi high-entropy alloys. Intermetallics, 2015, 60: 1 doi: 10.1016/j.intermet.2015.01.004 [30] Wang W R, Qi W, Xie L, et al. Microstructure and corrosion behavior of (CoCrFeNi)95Nb5 high-entropy alloy coating fabricated by plasma spraying. Materials, 2019, 12(5): 694 doi: 10.3390/ma12050694 [31] Hsu W L, Yang Y C, Chen C Y, et al. Thermal sprayed high-entropy NiCo0.6Fe0.2Cr1.5SiAlTi0.2 coating with improved mechanical properties and oxidation resistance. Intermetallics, 2017, 89: 105 doi: 10.1016/j.intermet.2017.05.015 [32] Ang A S M, Berndt C C, Sesso M L, et al. Plasma-sprayed high entropy alloys: microstructure and properties of AlCoCrFeNi and MnCoCrFeNi. Metall Mater Trans A, 2015, 46(2): 791 doi: 10.1007/s11661-014-2644-z [33] Anupam A, Kottada R S, Kashyap S, et al. Understanding the microstructural evolution of high entropy alloy coatings manufactured by atmospheric plasma spray processing. Appl Surf Sci, 2020, 505: 144117 doi: 10.1016/j.apsusc.2019.144117 [34] Xiong W. Preparation of High-Entropy Alloy Coatings by APS and Study on Their Microstructure and Properties [Dissertation]. Zhenjiang: Jiangsu University of Science and Technology, 2017熊偉. 高熵合金涂層的APS制備及組織與性能研究[學位論文]. 鎮江: 江蘇科技大學, 2017 [35] Lin D Y, Zhang N N, He B, et al. Influence of laser re-melting and vacuum heat treatment on plasma-sprayed FeCoCrNiAl alloy coatings. J Iron Steel Res Int, 2017, 24(12): 1199 doi: 10.1016/S1006-706X(18)30018-9 [36] Wang C M, Yu J X, Zhang Y, et al. Phase evolution and solidification cracking sensibility in laser remelting treatment of the plasma-sprayed CrMnFeCoNi high entropy alloy coating. Mater Des, 2019, 182: 108040 doi: 10.1016/j.matdes.2019.108040 [37] Chen L J, Bobzin K, Zhou Z, et al. Wear behavior of HVOF-sprayed Al0.6TiCrFeCoNi high entropy alloy coatings at different temperatures. Surf Coat Technol, 2019, 358: 215 doi: 10.1016/j.surfcoat.2018.11.052 [38] L?bel M, Lindner T, Lampke T. High-temperature wear behaviour of AlCoCrFeNiTi0.5 coatings produced by HVOF. Surf Coat Technol, 2020, 403: 126379 doi: 10.1016/j.surfcoat.2020.126379 [39] Srivastava M, Jadhav M, Chethan, et al. Synthesis and properties of high velocity oxy-fuel sprayed FeCoCrNi2Al high entropy alloy coating. Surf Coat Technol, 2019, 378: 124950 doi: 10.1016/j.surfcoat.2019.124950 [40] Vallimanalan A, Babu S P K, Muthukumaran S, et al. Corrosion behaviour of thermally sprayed Mo added AlCoCrNi high entropy alloy coating. Mater Today Proc, 2020, 27: 2398 doi: 10.1016/j.matpr.2019.09.149 [41] Guo W, Liang X B, Chen Y X, et al. Preparation and characterization of the FeCrNiCoCu(B) high-entropy alloy coatings. China Surf Eng, 2011, 24(2): 70 doi: 10.3969/j.issn.1007-9289.2011.02.013郭偉, 梁秀兵, 陳永雄, 等. FeCrNiCoCu(B)高熵合金涂層的制備與表征. 中國表面工程, 2011, 24(2):70 doi: 10.3969/j.issn.1007-9289.2011.02.013 [42] Liang X B, Chen Y X, Zhang Z B, et al. Effect of heat treatment on FeCrNiCoCu high-entropy alloy coating. J Acad Armored Force Eng, 2013, 27(4): 96梁秀兵, 陳永雄, 張志彬, 等. 熱處理對FeCrNiCoCu高熵合金涂層的影響. 裝甲兵工程學院學報, 2013, 27(4):96 [43] Lehtonen J, Koivuluoto H, Ge Y L, et al. Cold gas spraying of a high-entropy CrFeNiMn equiatomic alloy. Coatings, 2020, 10(1): 53 doi: 10.3390/coatings10010053 [44] Anupam A, Kumar S, Chavan N M, et al. First report on cold-sprayed AlCoCrFeNi high-entropy alloy and its isothermal oxidation. J Mater Res, 2019, 34(5): 796 doi: 10.1557/jmr.2019.38 [45] Yin S, Li W Y, Song B, et al. Deposition of FeCoNiCrMn high entropy alloy (HEA) coating via cold spraying. J Mater Sci Technol, 2019, 35(6): 1003 doi: 10.1016/j.jmst.2018.12.015 [46] Karthikeyan J, Berndt C C, Tikkanen J, et al. Plasma spray synthesis of nanomaterial powders and deposits. Mater Sci Eng A, 1997, 238(2): 275 doi: 10.1016/S0921-5093(96)10568-2 [47] Darut G, Niederhauser A, Jaccoud B, et al. VLPPS: An emerging process to create well-defined components by additive manufacturing. J Therm Spray Technol, 2019, 28(1-2): 255 doi: 10.1007/s11666-018-0792-1 [48] Fauchais P, Montavon G, Bertrand G. From powders to thermally sprayed coatings. J Therm Spray Technol, 2010, 19(1-2): 56 doi: 10.1007/s11666-009-9435-x [49] Montavon G, Sampath S, Berndt C C, et al. Effects of vacuum plasma spray processing parameters on splat morphology. J Therm Spray Technol, 1995, 4(1): 67 doi: 10.1007/BF02648530 [50] Berndt C C, Hasan F, Tietz U, et al. A review of hydroxyapatite coatings manufactured by thermal spray // Nissan B B. Advances in Calcium Phosphate Biomaterials. Berlin: Springer, 2014: 267 [51] Alagarsamy K, Fortier A, Komarasamy M, et al. Mechanical properties of high entropy alloy Al0.1CoCrFeNi for peripheral vascular stent application. Cardiovasc Eng Technol, 2016, 7(4): 448 doi: 10.1007/s13239-016-0286-6 [52] Popescu G, Ghiban B, Popescu C A, et al. New TiZrNbTaFe high entropy alloy used for medical applications. IOP Conf Ser Mater Sci Eng, 2018, 400(2): 022049 [53] Vladescu A, Titorencu I, Dekhtyar Y, et al. In vitro biocompatibility of Si alloyed multi-principal element carbide coatings. PLoS ONE, 2016, 11(8): e0161151 doi: 10.1371/journal.pone.0161151 [54] Oses C, Toher C, Curtarolo S. High-entropy ceramics. Nat Rev Mater, 2020, 5: 295 doi: 10.1038/s41578-019-0170-8 [55] Wang F, Yan X L, Wang T Y, et al. Irradiation damage in (Zr0.25Ta0.25Nb0.25Ti0.25)C high-entropy carbide ceramics. Acta Mater, 2020, 195: 739 doi: 10.1016/j.actamat.2020.06.011 [56] Xie C X, Li W, Zheng D H, et al. Study of crystallization behavior and kinetics of magnetic FeCoCrNiZr high entropy amorphous alloy. J Non-Cryst Solids, 2019, 514: 20 doi: 10.1016/j.jnoncrysol.2019.03.039 [57] Satake M, Bitoh T. Synthesis of Fe-Co-Ni-(B, Si, C) ferromagnetic high entropy amorphous alloys and their thermal and magnetic properties. J Jpn Soc Powder Powder Metall, 2018, 65(7): 401 doi: 10.2497/jjspm.65.401 [58] Li X Q, Wei D X, Vitos L, et al. Micro-mechanical properties of new alternative binders for cemented carbides: CoCrFeNiWx high-entropy alloys. J Alloys Compd, 2020, 820: 153141 doi: 10.1016/j.jallcom.2019.153141 [59] Peng Y B, Zhang W, Li T C, et al. Effect of WC content on microstructures and mechanical properties of FeCoCrNi high-entropy alloy/WC composite coatings by plasma cladding. Surf Coat Technol, 2020, 385: 125326 doi: 10.1016/j.surfcoat.2019.125326 [60] Nyg?rd M M, S?awiński W A, Ek G, et al. Local order in high-entropy alloys and associated deuterides – a total scattering and Reverse Monte Carlo study. Acta Mater, 2020, 199: 504 doi: 10.1016/j.actamat.2020.08.045 [61] Kaufmann K, Vecchio K S. Searching for high entropy alloys: A machine learning approach. Acta Mater, 2020, 198: 178 doi: 10.1016/j.actamat.2020.07.065 [62] Gao T J, Zhao D, Zhang T W, et al. Strain-rate-sensitive mechanical response, twinning, and texture features of NiCoCrFe high-entropy alloy: Experiments, multi-level crystal plasticity and artificial neural networks modeling. J Alloys Compd, 2020, 845: 155911 doi: 10.1016/j.jallcom.2020.155911 -