<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

充填型單縫煤巖水力脈動解堵試驗研究

葉功勤 曹函 高強 陳裕 孫平賀 張紹和

葉功勤, 曹函, 高強, 陳裕, 孫平賀, 張紹和. 充填型單縫煤巖水力脈動解堵試驗研究[J]. 工程科學學報, 2022, 44(3): 348-356. doi: 10.13374/j.issn2095-9389.2020.10.17.001
引用本文: 葉功勤, 曹函, 高強, 陳裕, 孫平賀, 張紹和. 充填型單縫煤巖水力脈動解堵試驗研究[J]. 工程科學學報, 2022, 44(3): 348-356. doi: 10.13374/j.issn2095-9389.2020.10.17.001
YE Gong-qin, CAO Han, GAO Qiang, CHEN Yu, SUN Ping-he, ZHANG Shao-he. Experimental study of the unblocking of coalbed with single-slit filling by pulse hydraulic fracturing[J]. Chinese Journal of Engineering, 2022, 44(3): 348-356. doi: 10.13374/j.issn2095-9389.2020.10.17.001
Citation: YE Gong-qin, CAO Han, GAO Qiang, CHEN Yu, SUN Ping-he, ZHANG Shao-he. Experimental study of the unblocking of coalbed with single-slit filling by pulse hydraulic fracturing[J]. Chinese Journal of Engineering, 2022, 44(3): 348-356. doi: 10.13374/j.issn2095-9389.2020.10.17.001

充填型單縫煤巖水力脈動解堵試驗研究

doi: 10.13374/j.issn2095-9389.2020.10.17.001
基金項目: 國家重點研發計劃資助項目(2020YFC1807200);國家自然科學基金資助項目(41302124);國土資源部復雜條件鉆采技術重點實驗室基金開放課題基金資助項目(EDLF2017)
詳細信息
    通訊作者:

    E-mail:pinghesun@csu.edu.cn

  • 中圖分類號: TB337

Experimental study of the unblocking of coalbed with single-slit filling by pulse hydraulic fracturing

More Information
  • 摘要: 利用室內自行研制的可調頻脈動水力壓裂系統及預制充填型單縫的煤巖,開展不同頻率條件下水力脈動解堵試驗,研究脈動作用下解堵水壓演化過程和解堵效果。試驗結果表明,水力脈動解堵壓力演化過程可分為三個階段:壓力上升階段、壓力下降階段和壓力波動穩定階段。在疲勞損傷和脈動波的雙重作用下,脈動作用下的煤巖解堵表現出解堵壓力閥值比定常流作用下更低、壓降持續時間更短、壓降幅值更小的特點。定常流作用下煤粉運移集中在壓力下降階段;脈動壓力作用下煤粉在壓力下降階段和壓力波動穩定階段均有運移,且壓力下降時間與運移煤粉總量成正相關關系,但煤粉總的運移量和定常流作用下的相當。脈動作用和定常流作用下徑向滲透主要發生在壓力上升至壓力峰值階段,但脈動流的解堵時間短,則濾液滲透半徑小對儲層的傷害小。綜合考慮解堵壓力、煤粉運移、解堵滲透路徑和解堵滲流深度,特別是解堵壓力和解堵滲流深度作為主要評價因素,在3 Hz條件下解堵效果最好,其具有較低的解堵壓力和最小的解堵滲流深度。

     

  • 圖  1  水力脈動解堵試驗系統

    Figure  1.  Pulse hydraulic unblocking test system

    圖  2  水力脈動解堵機理示意圖

    Figure  2.  Schematic diagram of the unblocking mechanism with pulse hydraulic fracturing

    圖  3  煤粉充填后的試樣和示意圖(單位:mm)

    Figure  3.  Sample with coal filling and its schematic diagram (unit: mm)

    圖  4  煤粉收集(a)和烘干(b)

    Figure  4.  Coal cutting collection (a) and drying (b)

    圖  5  解堵壓力曲線。(a)0 Hz壓力曲線;(b)1 Hz壓力曲線;(c)3 Hz壓力曲線;(d)5 Hz壓力曲線

    Figure  5.  Unblocking pressure curve: (a) 0 Hz pressure curve; (b) 1 Hz pressure curve; (c) 3 Hz pressure curve; (d) 5 Hz pressure curve

    圖  6  解堵過程中煤粉運移情況。(a)定常流壓力下降期;(b)定常流壓力衰減后;(c)脈沖流壓力波動期

    Figure  6.  Coal powder migration in the unblocking process: (a) period of steady flow pressure drop; (b) after the steady flow pressure decays; (c) pulse flow pressure fluctuation period

    圖  7  不同頻率下煤粉運移質量

    Figure  7.  Coal cutting mass transported at various frequencies

    圖  8  壓降時間與煤粉運移質量曲線

    Figure  8.  Curve of the pressure drop time and coal cutting transport quality

    圖  9  不同頻率下解堵路徑。(a)0 Hz液流路徑;(b)1 Hz液流路徑;(c)3 Hz液流路徑;(d)5 Hz液流路徑

    Figure  9.  Unblocking path at different frequencies: (a) 0 Hz liquid flow path; (b) 1 Hz liquid flow path; (c) 3 Hz liquid flow path; (d) 5 Hz liquid flow path

    圖  10  不同頻率下滲透狀態。(a)0 Hz滲透狀態;(b)1 Hz滲透狀態;(c)3 Hz滲透狀態;(d)5 Hz滲透狀態

    Figure  10.  Seepage radius at different frequencies: (a) 0 Hz penetration state; (b) 1 Hz penetration state; (c) 3 Hz penetration state; (d) 5 Hz penetration state

    表  1  原巖和相似巖樣物理參數比較

    Table  1.   Comparison of physical parameters of the original rock and of similar rock samples

    MediumUnconfined compressive strength/MPaTensile strength/MPaPoisson’s ratioElastic modulus/GPaFriction angle/(°)Cohesion/MPa12 h expansion rate/%
    Coal rock6.41–9.050.687–0.7160.19–0.241.37–3.8618.27–33.80.982–1.340.35–0.80
    Similar sample7.450.580.2373.9221.551.630.20
    下載: 導出CSV

    表  2  解堵試驗參數設置

    Table  2.   Unblocking test scheme

    NumberFrequency/
    Hz
    Vertical sealing pressure/MPaHorizontal lateral pressure /MPaTest groups
    101.50.51
    211.50.52
    331.50.52
    451.50.52
    下載: 導出CSV

    表  3  不同頻率解堵壓力參數

    Table  3.   Unblocking pressure under different frequencies

    Frequency/HzSteady fluctuation pressure/kPaCritical unblocking pressure/kPaPressure drop amplitude/kPaPressure drop duration/sPressure rise duration/sf·t per cycle
    0146.6735.6592.09.712.52
    1451.9615.7163.85.67.737.73
    3237.4381.0143.62.76.3218.96
    5165.2291.3126.14.89.9849.90
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Qian B Z, Zhu J F. New progress in coal seam gas development and utilization. Nat Gas Oil, 2010, 28(4): 29 doi: 10.3969/j.issn.1006-5539.2010.04.009

    錢伯章, 朱建芳. 煤層氣開發與利用新進展. 天然氣與石油, 2010, 28(4):29 doi: 10.3969/j.issn.1006-5539.2010.04.009
    [2] Ge Z L. Mechanism and Experimental Study of Perforation Increasing Production in Low Permeability Gas Reservoir with Pulsed Abrasive Water Jets [Dissertation]. Chongqing: Chongqing University, 2011

    葛兆龍. 低滲氣藏脈沖磨料射流射孔增產機理及實驗研究[學位論文]. 重慶: 重慶大學, 2011
    [3] Li Q G, Lin B Q, Zhai C. The effect of pulse frequency on the fracture extension during hydraulic fracturing. J Nat Gas Sci Eng, 2014, 21: 296 doi: 10.1016/j.jngse.2014.08.019
    [4] Huang B X, Liu C Y, Fu J H, et al. Hydraulic fracturing after water pressure control blasting for increased fracturing. Int J Rock Mech Min Sci, 2011, 48(6): 976 doi: 10.1016/j.ijrmms.2011.06.004
    [5] Kabir M A, Khan M M K, Bhuiyan M A. Flow phenomena in a channel with different shaped obstructions at the entrance. Fluid Dyn Res, 2004, 35(6): 391 doi: 10.1016/j.fluiddyn.2004.09.001
    [6] Yu X. Research on Propagation Law of Hydraulic Fracture Pressure Wave in Coal Fissures and Blockings Removal Mechanism [Dissertation]. China University of Mining and Technology, 2016

    余旭. 煤層脈動水力壓裂壓力波沿裂隙傳播規律和解堵機理研究[學位論文]. 北京: 中國礦業大學, 2016
    [7] He P, Xiong J Y, Lu Z H, et al. Study of pulse wave transmission mechanism based on high pulse hydraulic fracturing. Chin J Hydrodyn, 2017, 32(1): 117

    賀培, 熊繼有, 陸朝暉, 等. 基于高壓脈動水力壓裂的脈動波傳播機理研究. 水動力學研究與進展(A輯), 2017, 32(1):117
    [8] Li Q G, Lin B Q, Zhai C, et al. Experimental study on action characteristic of pulsating parameters in coal seam pulse hydraulic fracturing. J China Coal Soc, 2013, 38(7): 1185

    李全貴, 林柏泉, 翟成, 等. 煤層脈動水力壓裂中脈動參量作用特性的實驗研究. 煤炭學報, 2013, 38(7):1185
    [9] Li A H, Liu P Q. Study on mechanism of pulsating pressure propagation disintegration in joints of bottom slab. Water Resour Hydropower Eng, 2006, 37(9): 33 doi: 10.3969/j.issn.1000-0860.2006.09.010

    李愛華, 劉沛清. 脈動壓力在板塊縫隙中傳播衰變機理研究. 水利水電技術, 2006, 37(9):33 doi: 10.3969/j.issn.1000-0860.2006.09.010
    [10] Liu P Q, Deng X Y. Numerical investigation of pressure fluctuations within crack layers of lower surfaces of slabs. Chin J Theoret Appl Mech, 1998, 30(6): 662 doi: 10.3321/j.issn:0459-1879.1998.06.004

    劉沛清, 鄧學鎣. 多級板塊縫隙中脈動壓力傳播過程數值研究. 力學學報, 1998, 30(6):662 doi: 10.3321/j.issn:0459-1879.1998.06.004
    [11] Teyssedou A, ?nder E N, Tye P. Air-water counter-current slug flow data in vertical-to-horizontal pipes containing orifice type obstructions. Int J Multiphase Flow, 2005, 31(7): 771 doi: 10.1016/j.ijmultiphaseflow.2005.03.005
    [12] Li A H, Liu P Q, Xu W L. Numerical study of fluctuating pressure propagation within complicated fracture network due to impinging jet. J Sichuan Univ Eng Sci Ed, 2009, 41(5): 36

    李愛華, 劉沛清, 許唯臨. 復雜裂隙網絡內沖擊射流脈動壓力傳播過程數值研究. 四川大學學報(工程科學版), 2009, 41(5):36
    [13] Zhao Z B. Study of technology of variable-frequency pulse water infusion into coal seam. J Min Saf Eng, 2008, 25(4): 486 doi: 10.3969/j.issn.1673-3363.2008.04.023

    趙振保. 變頻脈沖式煤層注水技術研究. 采礦與安全工程學報, 2008, 25(4):486 doi: 10.3969/j.issn.1673-3363.2008.04.023
    [14] Zhai C, Li X Z, Li Q G. Research and application of coal seam pulse hydraulic fracturing technology. J China Coal Soc, 2011, 36(12): 1996

    翟成, 李賢忠, 李全貴. 煤層脈動水力壓裂卸壓增透技術研究與應用. 煤炭學報, 2011, 36(12):1996
    [15] Li X Z, Lin B Q, Zhai C, et al. The mechanism of breaking coal and rock by pulsating pressure wave in single low permeability seam. J China Coal Soc, 2013, 38(6): 918

    李賢忠, 林柏泉, 翟成, 等. 單一低透煤層脈動水力壓裂脈動波破煤巖機理. 煤炭學報, 2013, 38(6):918
    [16] Ni G H, Lin B Q, Zhai C, et al. Borehole sealed parameter measurement and analysis of pulsating hydraulic fracturing. J China Univ Min Technol, 2013, 42(2): 177

    倪冠華, 林柏泉, 翟成, 等. 脈動水力壓裂鉆孔密封參數的測定及分析. 中國礦業大學學報, 2013, 42(2):177
    [17] Lu P Q, Li G S, Huang Z W, et al. Establishment and solution of a dynamic and static response numerical model for pulsating hydro-fracturing in coal seams. Rock Soil Mech, 2015, 36(5): 1471

    陸沛青, 李根生, 黃中偉, 等. 煤層脈動水力壓裂動靜態響應數值模型及求解. 巖土力學, 2015, 36(5):1471
    [18] Wang Y R, Zhang J M, Diao M J, et al. Experimental study on propagation of flucturation pressure in fissures. J Hydraul Eng, 2002(12): 44 doi: 10.3321/j.issn:0559-9350.2002.12.009

    王玉蓉, 張建民, 刁明軍, 等. 脈動水壓力沿縫隙傳播的試驗研究. 水利學報, 2002(12):44 doi: 10.3321/j.issn:0559-9350.2002.12.009
    [19] Wu J J, Zhang S H, Sun P H, et al. Experimental study on acoustic emission characteristics in coal seam pulse hydraulic fracturing. J Cent South Univ Sci Technol, 2017, 48(7): 1866 doi: 10.11817/j.issn.1672-7207.2017.07.025

    吳晶晶, 張紹和, 孫平賀, 等. 煤巖脈動水力壓裂過程中聲發射特征的試驗研究. 中南大學學報(自然科學版), 2017, 48(7):1866 doi: 10.11817/j.issn.1672-7207.2017.07.025
    [20] Chen J Z, Cao H, Sun P H, et al. Mechanisms of fracture extending in coal rock by pulse hydraulic fracturing under triaxial loading. Rock Soil Mech, 2017, 38(4): 1023

    陳江湛, 曹函, 孫平賀, 等. 三軸加載下煤巖脈沖水力壓裂擴縫機制研究. 巖土力學, 2017, 38(4):1023
    [21] Xu Y P, Lin B Q, Zhai C, et al. Analysis on dynamic characteristics of cracks extension in directional hydraulic fracturing and its application. China Saf Sci J, 2011, 21(7): 104 doi: 10.3969/j.issn.1003-3033.2011.07.018

    徐幼平, 林柏泉, 翟成, 等. 定向水力壓裂裂隙擴展動態特征分析及其應用. 中國安全科學學報, 2011, 21(7):104 doi: 10.3969/j.issn.1003-3033.2011.07.018
    [22] Li Q G, Lin B Q, Zhai C, et al. Variable frequency of pulse hydraulic fracturing for improving permeability in coal seam. Int J Min Sci Technol, 2013, 23(6): 847 doi: 10.1016/j.ijmst.2013.10.011
    [23] Ding S D, Sun L M. Fracture Mechanics. Beijing: China Machine Press, 1997

    丁隧棟, 孫利民. 斷裂力學. 北京: 機械工業出版社, 1997
    [24] Xu J Z, Zhai C, Qin L. Mechanism and application of pulse hydraulic fracturing in improving drainage of coalbed methane. J Nat Gas Sci Eng, 2017, 40: 79 doi: 10.1016/j.jngse.2017.02.012
    [25] Ge X R. Study on deformation and strength behaviour of the large-sized triaxial rock samples under cyclic loading. Rock Soil Mech, 1987, 8(2): 11

    葛修潤. 周期荷載作用下巖石大型三軸試件的變形和強度特性研究. 巖土力學, 1987, 8(2):11
    [26] Yang Y J, Song Y, Chu J. Experimental study on characteristics of strength and deformation of coal under cyclic loading. Chin J Rock Mech Eng, 2007, 26(1): 202

    楊永杰, 宋揚, 楚俊. 循環荷載作用下煤巖強度及變形特征試驗研究. 巖石力學與工程學報, 2007, 26(1):202
    [27] Zhai C, Yu X, Xiang X W, et al. Experimental study of pulsating water pressure propagation in CBM reservoirs during pulse hydraulic fracturing. J Nat Gas Sci Eng, 2015, 25: 15 doi: 10.1016/j.jngse.2015.04.027
    [28] Bai R N. Influence of stress conditions on water seepage of coal microscopic pore model. Saf Coal Mines, 2016, 47(12): 180

    白若男. 壓力條件對煤體微觀孔隙模型水滲流的影響. 煤礦安全, 2016, 47(12):180
  • 加載中
圖(10) / 表(3)
計量
  • 文章訪問數:  736
  • HTML全文瀏覽量:  349
  • PDF下載量:  41
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-10-17
  • 網絡出版日期:  2020-12-11
  • 刊出日期:  2022-01-08

目錄

    /

    返回文章
    返回