Experimental study of the unblocking of coalbed with single-slit filling by pulse hydraulic fracturing
-
摘要: 利用室內自行研制的可調頻脈動水力壓裂系統及預制充填型單縫的煤巖,開展不同頻率條件下水力脈動解堵試驗,研究脈動作用下解堵水壓演化過程和解堵效果。試驗結果表明,水力脈動解堵壓力演化過程可分為三個階段:壓力上升階段、壓力下降階段和壓力波動穩定階段。在疲勞損傷和脈動波的雙重作用下,脈動作用下的煤巖解堵表現出解堵壓力閥值比定常流作用下更低、壓降持續時間更短、壓降幅值更小的特點。定常流作用下煤粉運移集中在壓力下降階段;脈動壓力作用下煤粉在壓力下降階段和壓力波動穩定階段均有運移,且壓力下降時間與運移煤粉總量成正相關關系,但煤粉總的運移量和定常流作用下的相當。脈動作用和定常流作用下徑向滲透主要發生在壓力上升至壓力峰值階段,但脈動流的解堵時間短,則濾液滲透半徑小對儲層的傷害小。綜合考慮解堵壓力、煤粉運移、解堵滲透路徑和解堵滲流深度,特別是解堵壓力和解堵滲流深度作為主要評價因素,在3 Hz條件下解堵效果最好,其具有較低的解堵壓力和最小的解堵滲流深度。Abstract: As an unconventional natural gas resource, coalbed methane has huge reserves in China and has good prospects for exploitation. During the coalbed methane extraction process, a large amount of coal powder is produced. Coal powder accumulates in fissures and blocks them, which is one of the important factors affecting the permeability of coalbed methane. A hydraulic fracturing system with adjustable frequency pulsation and single-slit filling prefabricated samples were developed for testing coalbed fissure unblocking. Experiments were carried out to study the evolution process of the unblocking pressure and the unblocking effect of pulse action under different frequency conditions. Results show that the evolution process of the unblocking pressure can be divided into three stages: pressure rise phase, decline phase, and pressure fluctuation stability phase. Compared to that, under a steady flow, the pressure threshold under the pulse action is lower, pressure drop duration is shorter, and pressure drop amplitude is smaller. The migration of pulverized coal under the action of steady flow is concentrated in the pressure drop stage. Under the action of pulsating pressure, pulverized coal migrates in the pressure drop stage and the pressure fluctuation stable stage. The pressure drop time is positively correlated with the total amount of pulverized coal transported, but the total transport volume of pulverized coal is equivalent to that under the action of steady flow. The fluid infiltration along the radial direction mainly occurs during the pressure rise to the peak pressure. The filtrate penetration radius is smaller due to the shorter unblocking time under the pulsating flow, and the reservoir damage is small. Comprehensively considering the unblocking pressure, coal migration, unblocking seepage path, and unblocking seepage depth, especially the unblocking pressure and unblocking seepage depth, as the main evaluation factors, the best unblocking effect is under the condition of 3 Hz, which has a lower solution.
-
表 1 原巖和相似巖樣物理參數比較
Table 1. Comparison of physical parameters of the original rock and of similar rock samples
Medium Unconfined compressive strength/MPa Tensile strength/MPa Poisson’s ratio Elastic modulus/GPa Friction angle/(°) Cohesion/MPa 12 h expansion rate/% Coal rock 6.41–9.05 0.687–0.716 0.19–0.24 1.37–3.86 18.27–33.8 0.982–1.34 0.35–0.80 Similar sample 7.45 0.58 0.237 3.92 21.55 1.63 0.20 表 2 解堵試驗參數設置
Table 2. Unblocking test scheme
Number Frequency/
HzVertical sealing pressure/MPa Horizontal lateral pressure /MPa Test groups 1 0 1.5 0.5 1 2 1 1.5 0.5 2 3 3 1.5 0.5 2 4 5 1.5 0.5 2 表 3 不同頻率解堵壓力參數
Table 3. Unblocking pressure under different frequencies
Frequency/Hz Steady fluctuation pressure/kPa Critical unblocking pressure/kPa Pressure drop amplitude/kPa Pressure drop duration/s Pressure rise duration/s f·t per cycle 0 146.6 735.6 592.0 9.7 12.52 1 451.9 615.7 163.8 5.6 7.73 7.73 3 237.4 381.0 143.6 2.7 6.32 18.96 5 165.2 291.3 126.1 4.8 9.98 49.90 www.77susu.com -
參考文獻
[1] Qian B Z, Zhu J F. New progress in coal seam gas development and utilization. Nat Gas Oil, 2010, 28(4): 29 doi: 10.3969/j.issn.1006-5539.2010.04.009錢伯章, 朱建芳. 煤層氣開發與利用新進展. 天然氣與石油, 2010, 28(4):29 doi: 10.3969/j.issn.1006-5539.2010.04.009 [2] Ge Z L. Mechanism and Experimental Study of Perforation Increasing Production in Low Permeability Gas Reservoir with Pulsed Abrasive Water Jets [Dissertation]. Chongqing: Chongqing University, 2011葛兆龍. 低滲氣藏脈沖磨料射流射孔增產機理及實驗研究[學位論文]. 重慶: 重慶大學, 2011 [3] Li Q G, Lin B Q, Zhai C. The effect of pulse frequency on the fracture extension during hydraulic fracturing. J Nat Gas Sci Eng, 2014, 21: 296 doi: 10.1016/j.jngse.2014.08.019 [4] Huang B X, Liu C Y, Fu J H, et al. Hydraulic fracturing after water pressure control blasting for increased fracturing. Int J Rock Mech Min Sci, 2011, 48(6): 976 doi: 10.1016/j.ijrmms.2011.06.004 [5] Kabir M A, Khan M M K, Bhuiyan M A. Flow phenomena in a channel with different shaped obstructions at the entrance. Fluid Dyn Res, 2004, 35(6): 391 doi: 10.1016/j.fluiddyn.2004.09.001 [6] Yu X. Research on Propagation Law of Hydraulic Fracture Pressure Wave in Coal Fissures and Blockings Removal Mechanism [Dissertation]. China University of Mining and Technology, 2016余旭. 煤層脈動水力壓裂壓力波沿裂隙傳播規律和解堵機理研究[學位論文]. 北京: 中國礦業大學, 2016 [7] He P, Xiong J Y, Lu Z H, et al. Study of pulse wave transmission mechanism based on high pulse hydraulic fracturing. Chin J Hydrodyn, 2017, 32(1): 117賀培, 熊繼有, 陸朝暉, 等. 基于高壓脈動水力壓裂的脈動波傳播機理研究. 水動力學研究與進展(A輯), 2017, 32(1):117 [8] Li Q G, Lin B Q, Zhai C, et al. Experimental study on action characteristic of pulsating parameters in coal seam pulse hydraulic fracturing. J China Coal Soc, 2013, 38(7): 1185李全貴, 林柏泉, 翟成, 等. 煤層脈動水力壓裂中脈動參量作用特性的實驗研究. 煤炭學報, 2013, 38(7):1185 [9] Li A H, Liu P Q. Study on mechanism of pulsating pressure propagation disintegration in joints of bottom slab. Water Resour Hydropower Eng, 2006, 37(9): 33 doi: 10.3969/j.issn.1000-0860.2006.09.010李愛華, 劉沛清. 脈動壓力在板塊縫隙中傳播衰變機理研究. 水利水電技術, 2006, 37(9):33 doi: 10.3969/j.issn.1000-0860.2006.09.010 [10] Liu P Q, Deng X Y. Numerical investigation of pressure fluctuations within crack layers of lower surfaces of slabs. Chin J Theoret Appl Mech, 1998, 30(6): 662 doi: 10.3321/j.issn:0459-1879.1998.06.004劉沛清, 鄧學鎣. 多級板塊縫隙中脈動壓力傳播過程數值研究. 力學學報, 1998, 30(6):662 doi: 10.3321/j.issn:0459-1879.1998.06.004 [11] Teyssedou A, ?nder E N, Tye P. Air-water counter-current slug flow data in vertical-to-horizontal pipes containing orifice type obstructions. Int J Multiphase Flow, 2005, 31(7): 771 doi: 10.1016/j.ijmultiphaseflow.2005.03.005 [12] Li A H, Liu P Q, Xu W L. Numerical study of fluctuating pressure propagation within complicated fracture network due to impinging jet. J Sichuan Univ Eng Sci Ed, 2009, 41(5): 36李愛華, 劉沛清, 許唯臨. 復雜裂隙網絡內沖擊射流脈動壓力傳播過程數值研究. 四川大學學報(工程科學版), 2009, 41(5):36 [13] Zhao Z B. Study of technology of variable-frequency pulse water infusion into coal seam. J Min Saf Eng, 2008, 25(4): 486 doi: 10.3969/j.issn.1673-3363.2008.04.023趙振保. 變頻脈沖式煤層注水技術研究. 采礦與安全工程學報, 2008, 25(4):486 doi: 10.3969/j.issn.1673-3363.2008.04.023 [14] Zhai C, Li X Z, Li Q G. Research and application of coal seam pulse hydraulic fracturing technology. J China Coal Soc, 2011, 36(12): 1996翟成, 李賢忠, 李全貴. 煤層脈動水力壓裂卸壓增透技術研究與應用. 煤炭學報, 2011, 36(12):1996 [15] Li X Z, Lin B Q, Zhai C, et al. The mechanism of breaking coal and rock by pulsating pressure wave in single low permeability seam. J China Coal Soc, 2013, 38(6): 918李賢忠, 林柏泉, 翟成, 等. 單一低透煤層脈動水力壓裂脈動波破煤巖機理. 煤炭學報, 2013, 38(6):918 [16] Ni G H, Lin B Q, Zhai C, et al. Borehole sealed parameter measurement and analysis of pulsating hydraulic fracturing. J China Univ Min Technol, 2013, 42(2): 177倪冠華, 林柏泉, 翟成, 等. 脈動水力壓裂鉆孔密封參數的測定及分析. 中國礦業大學學報, 2013, 42(2):177 [17] Lu P Q, Li G S, Huang Z W, et al. Establishment and solution of a dynamic and static response numerical model for pulsating hydro-fracturing in coal seams. Rock Soil Mech, 2015, 36(5): 1471陸沛青, 李根生, 黃中偉, 等. 煤層脈動水力壓裂動靜態響應數值模型及求解. 巖土力學, 2015, 36(5):1471 [18] Wang Y R, Zhang J M, Diao M J, et al. Experimental study on propagation of flucturation pressure in fissures. J Hydraul Eng, 2002(12): 44 doi: 10.3321/j.issn:0559-9350.2002.12.009王玉蓉, 張建民, 刁明軍, 等. 脈動水壓力沿縫隙傳播的試驗研究. 水利學報, 2002(12):44 doi: 10.3321/j.issn:0559-9350.2002.12.009 [19] Wu J J, Zhang S H, Sun P H, et al. Experimental study on acoustic emission characteristics in coal seam pulse hydraulic fracturing. J Cent South Univ Sci Technol, 2017, 48(7): 1866 doi: 10.11817/j.issn.1672-7207.2017.07.025吳晶晶, 張紹和, 孫平賀, 等. 煤巖脈動水力壓裂過程中聲發射特征的試驗研究. 中南大學學報(自然科學版), 2017, 48(7):1866 doi: 10.11817/j.issn.1672-7207.2017.07.025 [20] Chen J Z, Cao H, Sun P H, et al. Mechanisms of fracture extending in coal rock by pulse hydraulic fracturing under triaxial loading. Rock Soil Mech, 2017, 38(4): 1023陳江湛, 曹函, 孫平賀, 等. 三軸加載下煤巖脈沖水力壓裂擴縫機制研究. 巖土力學, 2017, 38(4):1023 [21] Xu Y P, Lin B Q, Zhai C, et al. Analysis on dynamic characteristics of cracks extension in directional hydraulic fracturing and its application. China Saf Sci J, 2011, 21(7): 104 doi: 10.3969/j.issn.1003-3033.2011.07.018徐幼平, 林柏泉, 翟成, 等. 定向水力壓裂裂隙擴展動態特征分析及其應用. 中國安全科學學報, 2011, 21(7):104 doi: 10.3969/j.issn.1003-3033.2011.07.018 [22] Li Q G, Lin B Q, Zhai C, et al. Variable frequency of pulse hydraulic fracturing for improving permeability in coal seam. Int J Min Sci Technol, 2013, 23(6): 847 doi: 10.1016/j.ijmst.2013.10.011 [23] Ding S D, Sun L M. Fracture Mechanics. Beijing: China Machine Press, 1997丁隧棟, 孫利民. 斷裂力學. 北京: 機械工業出版社, 1997 [24] Xu J Z, Zhai C, Qin L. Mechanism and application of pulse hydraulic fracturing in improving drainage of coalbed methane. J Nat Gas Sci Eng, 2017, 40: 79 doi: 10.1016/j.jngse.2017.02.012 [25] Ge X R. Study on deformation and strength behaviour of the large-sized triaxial rock samples under cyclic loading. Rock Soil Mech, 1987, 8(2): 11葛修潤. 周期荷載作用下巖石大型三軸試件的變形和強度特性研究. 巖土力學, 1987, 8(2):11 [26] Yang Y J, Song Y, Chu J. Experimental study on characteristics of strength and deformation of coal under cyclic loading. Chin J Rock Mech Eng, 2007, 26(1): 202楊永杰, 宋揚, 楚俊. 循環荷載作用下煤巖強度及變形特征試驗研究. 巖石力學與工程學報, 2007, 26(1):202 [27] Zhai C, Yu X, Xiang X W, et al. Experimental study of pulsating water pressure propagation in CBM reservoirs during pulse hydraulic fracturing. J Nat Gas Sci Eng, 2015, 25: 15 doi: 10.1016/j.jngse.2015.04.027 [28] Bai R N. Influence of stress conditions on water seepage of coal microscopic pore model. Saf Coal Mines, 2016, 47(12): 180白若男. 壓力條件對煤體微觀孔隙模型水滲流的影響. 煤礦安全, 2016, 47(12):180 -