-
摘要: 現有的大壩整體性態評價方法以定性評價為主,主觀性較強。針對這一問題,以單測點監控模型的計算值與監測儀器實測值之間的殘差為基礎,提出采用多測點融合殘差表征大壩整體性態。結合信息熵理論研究了不同測點的殘差變化規律,從而對各測點殘差的融合權重進行了分配,計算了融合殘差。通過對融合殘差進行分布分析,利用逆向云發生器、正向云發生器建立了表征大壩不同性態的概念云,即評價標準。在此基礎上,結合云相似度算法,建立了大壩整體性態的評價模型。算例表明,該模型能夠有效識別大壩監測資料中的異常測值,并能夠定量、客觀地評價大壩整體性態,評價結果合理、可靠,可為保障大壩安全運行提供重要參考。Abstract: A dam is an important piece of infrastructure for ensuring economic and social development. During operation, because of environmental changes, aging materials, and other factors, a dam may develop accident risks and once it fails, it poses a great threat to society. Therefore, it is of great significance to use reasonable methods for analyzing the monitoring data collected by a dam safety monitoring system and evaluate a dam’s behavior to ensure operation safety. At present, the existing methods are mainly devoted to evaluating the local state of a dam according to the monitoring information of a single measuring point. Relatively few studies are available on the evaluation methods for the overall state of a dam, and the existing methods are mainly qualitative and subjective. To address this problem, the residual between the model calculated value and the measured value was taken as the research basis. The concept of the fusion residual, an important index for characterizing the overall behavior of a dam, was promoted. Combined with the information entropy theory, the variation of residuals at different measuring points was studied, and the fusion weight of residuals at each measuring point was analyzed. The fusion residual was calculated. Based on the distribution analysis of the fusion residual, a concept cloud representing the different states of a dam, namely, the evaluation criteria, was established using a reverse cloud generator and a forward cloud generator. On this basis, an evaluation model of the overall behavior of a dam was established and combined with the cloud similarity algorithm. The example shows that the evaluation method can effectively identify the abnormal value of a dam and evaluate its overall behavior. The evaluation results are reasonable and reliable. The model can evaluate the overall behavior of a dam quantitatively and objectively, and the evaluation results are reasonable and reliable, providing an important reference for the safe operation of a dam.
-
Key words:
- dam /
- fusion residual /
- overall behavior /
- cloud theory /
- evaluation model
-
圖 2 不同相交條件下的云重疊面積。(a)全云Cq與Cl相交,一個交點;(b)全云Cq與Cl相交,兩個交點;(c)半云Cq與Cl相交,一個交點;(d)半云Cq與Cl相交,兩個交點
Figure 2. Overlapping area of clouds under different intersection conditions: (a) entire cloud Cq intersecting Cl with one intersection; (b) entire cloud Cq intersecting Cl with two intersections; (c) half cloud Cq intersecting Cl with one intersection; (d) half cloud Cq intersecting Cl with two intersections
表 1 云重疊面積計算方法
Table 1. Calculation method of the cloud overlapping area
Intersection diagram Abscissa of the intersection S Calculation method Fig.2(a) $ {x_{\text{a}}} $ $ {S_1} + {S_2} $ $ \int_{{E_{{\text{x,}}}}_l - 3{E_{{\text{n,}}}}_l}^{{x_{\text{a}}}} {{y_l}(x){\text{d}}x + \int_{{x_{\text{a}}}}^{{E_{{\text{x,}}q}} + 3{E_{{\text{n,}}q}}} {{y_q}(x){\text{d}}x} } $ Fig.2(b) $ {x_{\text{b}}},\;{x_{\text{c}}} $ $ {S_1} + {S_2} + {S_3} $ $ \int_{{E_{{\text{x,}}q}} - 3{E_{{\text{n,}}q}}}^{{x_{\text{b}}}} {{y_q}(x){\text{d}}x + \int_{{x_{\text{b}}}}^{{x_{\text{c}}}} {{y_l}(x){\text{d}}x} + \int_{{x_{\text{c}}}}^{{E_{{\text{x,}}q}} + 3{E_{{\text{n,}}q}}} {{y_q}(x){\text{d}}x} } $ Fig.2(c) $ {x_{\text{d}}} $ $ {S_1} + {S_2} $ $ \int_{{E_{{\text{x,}}l}} - 3{E_{{\text{n,}}l}}}^{{x_{\text{d}}}} {{y_l}(x){\text{d}}x + \int_{{x_d}}^{{E_{{\text{x,}}q}} + 3{E_{{\text{n,}}q}}} {{y_q}(x){\text{d}}x} } $ Fig.2(d) $ {x_{\text{e}}},\;{x_{\text{f}}} $ $ {S_1} + {S_2} + {S_3} $ $ \int_{{E_{{\text{x,}}q}} - 3{E_{{\text{n,}}q}}}^{{x_{\text{e}}}} {{y_q}(x){\text{d}}x + \int_{{x_{\text{e}}}}^{{x_{\text{f}}}} {{y_l}(x){\text{d}}x} + \int_{{x_{\text{f}}}}^{{E_{{\text{x,}}q}} + 3{E_{{\text{n,}}q}}} {{y_q}(x){\text{d}}x} } $ $ {S_q} $ — — $ \int_{{E_{{\text{x,}}q}} - 3{E_{{\text{n,}}q}}}^{{E_{{\text{x,}}q}} + 3{E_{{\text{n,}}q}}} {{y_q}(x){\text{d}}x} $ $ {S_l} $ — — $ \int_{{E_{{\text{x,}}l}} - 3{E_{{\text{n,}}l}}}^{{E_{{\text{x,}}l}} + 3{E_{{\text{n,}}l}}} {{y_l}(x){\text{d}}x} $ 表 2 大壩整體性態評價標準(概念云)
Table 2. Evaluation criteria for the integrity of a dam (conceptual cloud)
Concept cloud Qualitative concept Extraction range of cloud feature parameters ${C_1}$ Abnormal $( - \infty ,\;{\mu _{0.025}})$ ${C_2}$ Basically normal $[{\mu _{0.025}},\;{\mu _{0.150}})$ ${C_3}$ Normal $[{\mu _{0.150}},\;{\mu _{0.850}})$ ${C_4}$ Basically normal $[{\mu _{0.850}},\;{\mu _{0.975}})$ ${C_5}$ Abnormal $[{\mu _{0.975}},\; + \infty )$ 表 3 EX401~EX409監控模型計算值與實測值相關系數
Table 3. Correlation coefficient between the calculated value and measured value of EX401?EX409
EX401 EX402 EX403 EX404 EX405 EX406 EX407 EX408 EX409 0.864 0.811 0.823 0.895 0.872 0.889 0.825 0.814 0.802 表 4 各測點殘差的權重
Table 4. Weight of residuals of each point
EX401 EX402 EX403 EX404 EX405 EX406 EX407 EX408 EX409 0.062 0.139 0.207 0.058 0.068 0.072 0.112 0.138 0.144 表 5 概念云特征參數
Table 5. Characteristic parameters of the concept cloud
Concept cloud Qualitative concept Extraction range of cloud feature parameters Ex En He ${C_1}$ Abnormal $( - \infty ,\;{\mu _{0.025}})$ ?1.6948 0.2755 0.0307 ${C_2}$ Basically normal $[{\mu _{0.025}},\;{\mu _{0.150}})$ ?0.992 0.1867 0.0486 ${C_3}$ Normal $[{\mu _{0.150}},\;{\mu _{0.850}})$ ?0.0171 0.407 0.1358 ${C_4}$ Basically normal $[{\mu _{0.850}},\;{\mu _{0.975}})$ 1.0776 0.247 0.0825 ${C_5}$ Abnormal $[{\mu _{0.975}},\; + \infty )$ 1.8814 0.2424 0.113 表 6 2010—2014年各年度云特征參數
Table 6. Cloud parameters for each year from 2010—2014
Year ${E_{\text{x}}}$ ${E_{\text{n}}}$ ${H_{\text{e}}}$ 2010 ?0.1326 0.6939 0.2186 2011 ?0.2336 0.6308 0.1534 2012 0.0792 0.7781 0.2951 2013 ?1.1044 0.4279 0.1125 2014 ?0.2123 0.7098 0.2003 表 7 2010—2014年各年評價云與概念云的相似度
Table 7. Similarity between evaluating clouds and concept clouds from 2010 to 2014
Year ${\eta _1}$ ${\eta _2}$ ${\eta _3}$ ${\eta _4}$ ${\eta _5}$ Evaluation results 2010 0.104 0.263 0.757 0.335 0.135 Normal 2011 0.108 0.302 0.896 0.283 0.109 Normal 2012 0.094 0.223 0.632 0.342 0.149 Normal 2013 0.196 0.499 0.384 0.049 0.016 Basically normal 2014 0.106 0.269 0.761 0.313 0.125 Normal www.77susu.com -
參考文獻
[1] Zhu B F. China is the largest and strongest country of concrete arch dams in the world. Water Resour Hydropower Eng, 2017, 48(2): 1朱伯芳. 中國是世界拱壩大國也是世界拱壩強國——在《特高拱壩建設總結及安全運行管理研究》會議上的發言. 水利水電技術, 2017, 48(2):1 [2] Gu C S, Su H Z, Wang S W. Advances in calculation models and monitoring methods for long-term deformation behavior of concrete dams. J Hydroelectr Eng, 2016, 35(5): 1 doi: 10.11660/slfdxb.20160501顧沖時, 蘇懷智, 王少偉. 高混凝土壩長期變形特性計算模型及監控方法研究進展. 水力發電學報, 2016, 35(5):1 doi: 10.11660/slfdxb.20160501 [3] Li M C, Ren Q B, Kong R, et al. Dynamic modeling and prediction analysis of dam deformation under multidimensional complex relevance. J Hydraul Eng, 2019, 50(6): 687李明超, 任秋兵, 孔銳, 等. 多維復雜關聯因素下的大壩變形動態建模與預測分析. 水利學報, 2019, 50(6):687 [4] Dong D D, Zu A J, Sun X L. Model of dam deformation monitoring based on genetic ant colony optimization and back propagation improved by Markov chain. J Yangtze River Sci Res Inst, 2019, 36(7): 48 doi: 10.11988/ckyyb.20171438董丹丹, 祖安君, 孫雪蓮. 基于GACO-BP-MC的大壩變形監控模型. 長江科學院院報, 2019, 36(7):48 doi: 10.11988/ckyyb.20171438 [5] Wei B W, Peng S J, Xu Z K, et al. The GA-BP prediction model considering chaos effect of dam displacement residual. Sci Sin Technol, 2015, 45(5): 541 doi: 10.1360/N092014-00181 [6] Hu D X, Qu X D, Yang J, et al. A safety monitoring model of dam deformation based on M-ELM. Adv Sci Technol Water Resour, 2019, 39(3): 75 doi: 10.3880/j.issn.1006-7647.2019.03.013胡德秀, 屈旭東, 楊杰, 等. 基于M-ELM的大壩變形安全監控模型. 水利水電科技進展, 2019, 39(3):75 doi: 10.3880/j.issn.1006-7647.2019.03.013 [7] Dai B, Gu C S, Zhao E F, et al. Statistical model optimized random forest regression model for concrete dam deformation monitoring. Struct Control Health Monitor, 2018, 25(6): e2170 doi: 10.1002/stc.2170 [8] Kang F, Liu J, Li J J, et al. Concrete dam deformation prediction model for health monitoring based on extreme learning machine. Struct Control Health Monitor, 2017, 24(10): e1997 doi: 10.1002/stc.1997 [9] Gamse S, Oberguggenberger M. Assessment of long-term coordinate time series using hydrostatic-season-time model for rock-fill embankment dam. Struct Control Health Monitor, 2017, 24(1): e1859 doi: 10.1002/stc.1859 [10] Gamse S, Henriques M J, Oberguggenberger M, et al. Analysis of periodicities in long-term displacement time series in concrete dams. Struct Control Health Monitor, 2020, 27(3): e2477 [11] Liu X, Wu Z R, Yang Y, et al. Information fusion diagnosis and early-warning method for monitoring the long-term service safety of high dams. J Zhejiang Univ Sci A Appl Phys Eng, 2012, 13(9): 687 doi: 10.1631/jzus.A1200122 [12] He J P, Ma C B, Shi Y Q. Multi-effect-quantity fusion model of high arch dam based on improved D-S evidence theory. Geomat Inf Sci Wuhan Univ, 2012, 37(12): 1397何金平, 馬傳彬, 施玉群. 高拱壩多效應量改進型D-S證據理論融合模型. 武漢大學學報(信息科學版), 2012, 37(12):1397 [13] Su H Z, Wen Z P, Sun X R, et al. Multisource information fusion-based approach diagnosing structural behavior of dam engineering. Struct Control Health Monitor, 2018, 25(2): e2073 doi: 10.1002/stc.2073 [14] Yu H, Wu Z R, Bao T F, et al. Multivariate analysis in dam monitoring data with PCA. Sci China Technol Sci, 2010, 53(4): 1088 doi: 10.1007/s11431-010-0060-1 [15] He J P. Theory and Application of Dam Safety Monitoring. Beijing: China Water & Power Press, 2010何金平. 大壩安全監測理論與應用. 北京: 中國水利水電出版社, 2010 [16] H?rdle W K, Simar L. Applied Multivariate Statistical Analysis. Upper Saddle River: Springer-Verlag Berlin Heidelberg, 2015 [17] Sun W Z, Yin X D, Li S J. A new navigation data fusion method based on entropy coefficient algorithm for underwater vehicles. Geomat Inf Sci Wuhan Univ, 2018, 43(10): 1465孫文舟, 殷曉冬, 李樹軍. 基于熵權重的水下載體導航信息融合方法. 武漢大學學報(信息科學版), 2018, 43(10):1465 [18] Liu H X, Yuan Y M, Zhou P, et al. Normal cloud model for condition evaluation of wind turbines based on fusion theory. Acta Energ Sol Sin, 2018, 39(10): 2891劉華新, 苑一鳴, 周沛, 等. 基于融合理論的風電機組狀態評價正態云模型. 太陽能學報, 2018, 39(10):2891 [19] Du J, Sun M Y. Hierarchical assessment method of transformer condition based on weight-varying grey cloud model. Trans China Electrotech Soc, 2020, 35(20): 4306杜江, 孫銘陽. 基于變權灰云模型的變壓器狀態層次評估方法. 電工技術學報, 2020, 35(20):4306 [20] Zhang M Y, Wang S X, Sun Z Z, et al. Comprehensive evaluation of landslide risks of oil and gas pipelines based on cloud theory. Chin J Eng, 2018, 40(4): 427張滿銀, 王生新, 孫志忠, 等. 基于云理論的油氣管道滑坡危險性綜合評價. 工程科學學報, 2018, 40(4):427 [21] Li L B, Guo X F, Fu J N, et al. Evaluation approach of passenger satisfaction for urban rail transit based on cloud model. J Tongji Univ Nat Sci, 2019, 47(3): 378李林波, 郭曉凡, 傅佳楠, 等. 基于云模型的城市軌道交通乘客滿意度評價. 同濟大學學報(自然科學版), 2019, 47(3):378 [22] Li S S, Cui T J, Ma Y D, et al. Cloud similarity based on the envelope and its application to the safety assessment. J Saf Environ, 2017, 17(4): 1267李莎莎, 崔鐵軍, 馬云東, 等. 基于包絡線的云相似度及其在安全評價中的應用. 安全與環境學報, 2017, 17(4):1267 [23] Wang J, Zhu J J, Liu X D. An integrated similarity measure method for normal cloud model based on shape and distance. System Eng Theory Pract, 2017, 37(3): 742 doi: 10.12011/1000-6788(2017)03-0742-10汪軍, 朱建軍, 劉小弟. 兼顧形狀-距離的正態云模型綜合相似度測算. 系統工程理論與實踐, 2017, 37(3):742 doi: 10.12011/1000-6788(2017)03-0742-10 [24] Li H L, Guo C H, Qiu W R. Similarity measurement between normal cloud models. Acta Electron Sin, 2011, 39(11): 2561李海林, 郭崇慧, 邱望仁. 正態云模型相似度計算方法. 電子學報, 2011, 39(11):2561 [25] Kao C Y, Loh C H. Monitoring of long-term static deformation data of Fei-Tsui arch dam using artificial neural network-based approaches. Struct Control Health Monitor, 2013, 20(3): 282 doi: 10.1002/stc.492 [26] Li T L, He A N, Shao J, et al. Copula-based model for hot-rolling back-up roll health prediction. Chin J Eng, 2020, 42(6): 787李天倫, 何安瑞, 邵健, 等. 基于Copula函數的熱軋支持輥健康狀態預測模型. 工程科學學報, 2020, 42(6):787 [27] Fu L W, Wu S. A new internal clustering validation index for categorical data based on concentration of attribute values. Chin J Eng, 2019, 41(5): 682傅立偉, 武森. 基于屬性值集中度的分類數據聚類有效性內部評價指標. 工程科學學報, 2019, 41(5):682 [28] Xu B, Li Z C, Huang Z H, et al. Cloud model diagnosis method of concrete dam crack behavior abnormality. Sci Sin Technol, 2015, 45(11): 1218 doi: 10.1360/N092014-00195徐波, 李占超, 黃志洪, 等. 混凝土壩裂縫轉異診斷的云模型法. 中國科學(技術科學), 2015, 45(11):1218 doi: 10.1360/N092014-00195 -