<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

航空發動機阻燃鈦合金力學性能預測及成分優化

李雅迪 弭光寶 李培杰 曹京霞 黃旭

李雅迪, 弭光寶, 李培杰, 曹京霞, 黃旭. 航空發動機阻燃鈦合金力學性能預測及成分優化[J]. 工程科學學報, 2022, 44(6): 1036-1043. doi: 10.13374/j.issn2095-9389.2020.10.12.001
引用本文: 李雅迪, 弭光寶, 李培杰, 曹京霞, 黃旭. 航空發動機阻燃鈦合金力學性能預測及成分優化[J]. 工程科學學報, 2022, 44(6): 1036-1043. doi: 10.13374/j.issn2095-9389.2020.10.12.001
LI Ya-di, MI Guang-bao, LI Pei-jie, CAO Jing-xia, HUANG Xu. Predicting the mechanical properties and composition optimization of a burn-resistant titanium alloy for aero-engines[J]. Chinese Journal of Engineering, 2022, 44(6): 1036-1043. doi: 10.13374/j.issn2095-9389.2020.10.12.001
Citation: LI Ya-di, MI Guang-bao, LI Pei-jie, CAO Jing-xia, HUANG Xu. Predicting the mechanical properties and composition optimization of a burn-resistant titanium alloy for aero-engines[J]. Chinese Journal of Engineering, 2022, 44(6): 1036-1043. doi: 10.13374/j.issn2095-9389.2020.10.12.001

航空發動機阻燃鈦合金力學性能預測及成分優化

doi: 10.13374/j.issn2095-9389.2020.10.12.001
基金項目: 國家自然科學基金資助項目(51471155,U2141222);國家科技重大專項資助項目(J2019-Ⅷ-0003-0165)
詳細信息
    通訊作者:

    E-mail: miguangbao@163.com

  • 中圖分類號: TG146.2

Predicting the mechanical properties and composition optimization of a burn-resistant titanium alloy for aero-engines

More Information
  • 摘要: 采用支持向量機算法,在實驗數據的基礎上,建立航空發動機阻燃鈦合金的合金化元素與力學性能關系模型,分析合金化元素對力學性能的影響規律。模型的輸入參數為V、Al、Si和C元素,輸出參數為室溫拉伸性能(抗拉強度、屈服強度、延伸率和斷面收縮率)。結果表明:各個力學性能支持向量機模型的線性相關系數均在0.975以上,具有較高的預測能力;各個力學性能測試樣本實驗值與模型預測值的絕對百分誤差均在5%以內,具有良好的泛化能力,能夠有效地反映出阻燃鈦合金的合金化元素與力學性能之間的定量關系,進而實現對該合金的成分優化。對于Ti?35V?15Cr阻燃鈦合金,可以通過加入質量分數為0~0.1%的Si元素和質量分數為0.05%~0.125%的C元素,并減少質量分數為2%~5%的V元素,來提高力學性能;對于Ti?25V?15Cr阻燃鈦合金,可以通過加入質量分數為1.5%~1.8%的Al元素和質量分數為0.15%~0.2%的C元素,來提高力學性能。

     

  • 圖  1  力學性能實驗值與模型預測值的線性相關性分析.(a)抗拉強度; (b)屈服強度; (c)伸長率; (d)斷面收縮率

    Figure  1.  Linear correlation analysis between the experimental and predicted values using SVM: (a) tensile strength; (b) yield strength; (c) elongation; (d) reduction of area

    圖  2  V元素含量對Ti?V?Cr系阻燃鈦合金力學性能的影響.(a)強度; (b)塑性

    Figure  2.  Influence of the V element content on the mechanical properties of the Ti?V?Cr burn-resistant titanium alloy: (a) strength;(b) ductility

    圖  3  Al元素含量對Ti?V?Cr系阻燃鈦合金力學性能的影響。(a)強度;(b)塑性

    Figure  3.  Influence of the Al element content on the properties of the Ti?V?Cr burn-resistant titanium alloy: (a) strength; (b) ductility

    圖  4  Si元素含量對Ti?V?Cr系阻燃鈦合金力學性能的影響。(a)強度;(b)塑性

    Figure  4.  Influence of the Si element content on the properties of the Ti?V?Cr burn-resistant titanium alloy: (a) strength; (b) ductility

    圖  5  C元素含量對Ti?V?Cr系阻燃鈦合金力學性能的影響。(a)強度;(b)塑性

    Figure  5.  Influence of the C element content on the properties of the Ti?V?Cr burn-resistant titanium alloy: (a) strength; (b) ductility

    表  1  Ti?V?Cr系阻燃鈦合金實驗值與支持向量機模型預測值的誤差比較            

    Table  1.   Error comparison of the mechanical properties of the experimental data with the predicted values using SVM

    SampleMass fraction/%ComparisonMechanical properties
    VAlSiCTensile strength/MPaYield strength/MPaElongation/%Reduction of area/%
    135.00000Experimental1042102810.015.0
    Predicted1042.101028.1010.1015.10
    Absolute error/%0.010.011.000.67
    235.0000.250Experimental1060103215.119.5
    Predicted1059.901031.9015.0019.40
    Absolute error/%0.010.010.660.52
    335.0000.500Experimental111110807.311.0
    Predicted1110.901079.907.4011.10
    Absolute error/%0.010.011.370.91
    435.00000.08Experimental1071100518.433.0
    Predicted1060.60997.3218.3032.90
    Absolute error%0.970.760.550.30
    535.0000.500.08Experimental1065100519.033.5
    Predicted1065.101005.1018.9033.40
    Absolute error/%0.010.010.520.30
    635.00000.15Experimental103495221.038.1
    Predicted1034.10952.1021.1038.20
    Absolute error/%0.010.010.470.26
    7*25.502.6000.27Experimental1070105016.022.5
    Predicted1069.901049.9014.6623.11
    Absolute error/%0.010.018.392.70
    8*20.0000.200Experimental96093324.546.0
    Predicted960.10933.1024.4045.90
    Absolute error/%0.010.010.410.22
    9*30.0000.200Experimental102597320.038.5
    Predicted1024.90973.1019.9032.84
    Absolute error/%0.010.010.5014.70
    1035.0000.300.10Experimental102596417.233.0
    Predicted1024.90963.9017.3033.10
    Absolute error/%0.010.010.580.30
    1135.2000.170.07Experimental102696316.529.4
    Predicted1026.10970.1616.6029.50
    Absolute error/%0.010.740.610.34
    12**25.2000.210Experimental96994218.530.4
    Predicted986.21936.3419.1831.78
    Absolute error/%1.780.603.684.54
    Note: **is test set and the rest are training sets;* are the data from references [12,16].
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Liang X Y, Mi G B, Li P J, et al. Theoretical study on ignition of titanium alloy under high temperature friction condition. Acta Phys Sin, 2020, 69(21): 343 doi: 10.7498/aps.69.20200304

    梁賢燁, 弭光寶, 李培杰, 等. 鈦合金高溫摩擦著火理論研究. 物理學報, 2020, 69(21):343 doi: 10.7498/aps.69.20200304
    [2] Mi G B, Huang X, Cao J X, et al. Microstructure characteristics of burning products of Ti?V?Cr fireproof titanium alloy by frictional ignition. Acta Phys Sin, 2016, 65(5): 056103 doi: 10.7498/aps.65.056103

    弭光寶, 黃旭, 曹京霞, 等. 摩擦點火Ti?V?Cr阻燃鈦合金燃燒產物的組織特征. 物理學報, 2016, 65(5):056103 doi: 10.7498/aps.65.056103
    [3] Zhao Y Q, Zhu K Y, Qu H L, et al. Microstructures of a burn resistant highly stabilized β-titanium alloy. Mater Sci Eng:A, 2000, 282(1-2): 153 doi: 10.1016/S0921-5093(99)00761-3
    [4] Ouyang P X, Mi G B, Cao J X, et al. Microstructure characteristics after combustion and fireproof mechanism of TiAl-based alloys. Mater Today Commun, 2018, 16: 364 doi: 10.1016/j.mtcomm.2018.07.012
    [5] Xiong J S, Huang J F, Xie G L, et al. Effect of electroplating Cr coating on combustion characteristics of TC4 titanium alloy. Chin J Eng, 2020, 42(8): 1007

    熊家帥, 黃進峰, 解國良, 等. 電鍍Cr涂層對TC4鈦合金燃燒性能的影響. 工程科學學報, 2020, 42(8):1007
    [6] Liang X Y, Mi G B Li P J, et al. Theoretical calculation of characteristics on titanium fire in aero-engine. J Aeronaut Mater, 2021, 41(6): 59

    梁賢燁, 弭光寶, 李培杰, 等. 航空發動機鈦火特性理論計算研究. 航空材料學報, 2021, 41(6):59
    [7] Mi G B, Yao K, Min X H. Effect of temperature on wear behavior in a Ti-V-Cr base fireproof titanium alloy. Int J Precis Eng Manuf, 2017, 18: 1553 doi: 10.1007/s12541-017-0184-3
    [8] Hood R, Johnson C M, Soo S L, et al. High-speed ball nose end milling of burn-resistant titanium (BuRTi) alloy. Int J Comput Integr Manuf, 2014, 27(2): 139 doi: 10.1080/0951192X.2013.801563
    [9] Li Y G, Blenkinsop P A, Loretto M H, et al. Effect of carbon and oxygen on microstructure and mechanical properties of Ti?25V?15Cr?2Al (wt%) alloys. Acta Mater, 1999, 47(10): 2889 doi: 10.1016/S1359-6454(99)00173-1
    [10] Li Y G, Blenkinsop P A, Loretto M H, et al. Effect of aluminium on deformation structure of highly stabilised β-Ti?V?Cr alloys. Mater Sci Technol, 1999, 15(2): 151 doi: 10.1179/026708399101505680
    [11] Sun F S, Lavernia E J. Creep behavior of nonburning Ti?35V?15Cr?xC alloys. J Mater Eng Perform, 2005, 14(6): 784 doi: 10.1361/105994905X75619
    [12] Xin S W, Zhao Y Q, Zeng W D, et al. Effect of V on the thermal stability and creep of Ti?V?Cr burn-resistant titanium alloy. Rare Met Mater Eng, 2007, 36(11): 2031 doi: 10.3321/j.issn:1002-185x.2007.11.036

    辛社偉, 趙永慶, 曾衛東, 等. V元素對Ti?V?Cr系阻燃鈦合金熱強性的影響. 稀有金屬材料與工程, 2007, 36(11):2031 doi: 10.3321/j.issn:1002-185x.2007.11.036
    [13] Mi G B, Huang X, Cao J X, et al. Ignition resistance performance and its theoretical analysis of Ti?V?Cr type fireproof titanium alloys. Acta Metall Sin, 2014, 50(5): 575

    弭光寶, 黃旭, 曹京霞, 等. Ti?V?Cr系阻燃鈦合金的抗點燃性能及其理論分析. 金屬學報, 2014, 50(5):575
    [14] Cao J X, Huang X, Mi G B, et al. Research progress on application technique of Ti?V?Cr burn resistant titanium alloys. J Aeronaut Mater, 2014, 34(4): 92 doi: 10.11868/j.issn.1005-5053.2014.4.009

    曹京霞, 黃旭, 弭光寶, 等. Ti?V?Cr系阻燃鈦合金應用研究進展. 航空材料學報, 2014, 34(4):92 doi: 10.11868/j.issn.1005-5053.2014.4.009
    [15] Lai Y J, Zhang P X, Xin S W, et al. Research progress on engineered technology of burn-resistant titanium alloys in China. Rare Met Mater Eng, 2015, 44(8): 2067

    賴運金, 張平祥, 辛社偉, 等. 國內阻燃鈦合金工程化技術研究進展. 稀有金屬材料與工程, 2015, 44(8):2067
    [16] Sun H Y, Zhao J, Liu Y A, et al. Effect of C addition on microstructure and mechanical properties of Ti?V?Cr burn resistant titanium alloys. Chin J Mater Res, 2019, 33(7): 537 doi: 10.11901/1005.3093.2019.090

    孫歡迎, 趙軍, 劉翊安, 等. C含量對Ti?V?Cr系阻燃鈦合金微觀組織和力學性能的影響. 材料研究學報, 2019, 33(7):537 doi: 10.11901/1005.3093.2019.090
    [17] Zhou T, Song Z, Sundmacher K. Big data creates new opportunities for materials research: A review on methods and applications of machine learning for materials design. Engineering, 2019, 5(6): 1017 doi: 10.1016/j.eng.2019.02.011
    [18] Wang H, Xiang X D, Zhang L T. Data+AI: The core of materials genomic engineering. Sci Technol Rev, 2018, 36(14): 15

    汪洪, 項曉東, 張瀾庭. 數據+人工智能是材料基因工程的核心. 科技導報, 2018, 36(14):15
    [19] Wu W, Sun Q. Applying machine learning to accelerate new materials development. Sci Sin Phys Mech Astron, 2018, 48(10): 58

    吳煒, 孫強. 應用機器學習加速新材料的研發. 中國科學:物理學 力學 天文學, 2018, 48(10):58
    [20] Malinov S, Sha W, McKeown J J. Modelling the correlation between processing parameters and properties in titanium alloys using artificial neural network. Comput Mater Sci, 2001, 21(3): 375 doi: 10.1016/S0927-0256(01)00160-4
    [21] Noori Banu P S, Devaki Rani S. Knowledge-based artificial neural network model to predict the properties of alpha+ beta titanium alloys. J Mech Sci Technol, 2016, 30(8): 3625 doi: 10.1007/s12206-016-0723-3
    [22] Sun L N. Heat treatment process optimization of directional solidification titanium alloys based on neural network. Ordnance Mater Sci Eng, 2017, 40(4): 30

    孫麗娜. 定向凝固鈦合金熱處理工藝的神經網絡優化. 兵器材料科學與工程, 2017, 40(4):30
    [23] Noori Banu P S, Devaki Rani S. Artificial neural network based optimization of prerequisite properties for the design of biocompatible titanium alloys. Comput Mater Sci, 2018, 149: 259 doi: 10.1016/j.commatsci.2018.03.039
    [24] Xu J J, Wang F. Tensile strength forecasting model foundation and checking of Ti?Al?V series Ti alloys. Hot Work Technol, 2018, 47(10): 72

    許佳佳, 王飛. Ti?Al?V系鈦合金抗拉強度預測模型的建立及驗證. 熱加工工藝, 2018, 47(10):72
    [25] Zhang X M, Xi Y Q, Li M, et al. Prediction of superplastic deformation behavior of WSTi3515S burn-resistant titanium alloy based on BP artificial neural network. Special Cast Nonferrous Alloys, 2019, 39(6): 668

    張學敏, 惠玉強, 李咪, 等. 基于BP神經網絡的WSTi3515S阻燃鈦合金超塑性變形行為預測. 特種鑄造及有色合金, 2019, 39(6):668
    [26] Zhou X H, Lou M Q, Zhang X M, et al. Prediction of effect of thermal exposure on tensile properties of TC4 titanium alloy based on neural network. Hot Work Technol, 2019, 48(14): 128

    周曉虎, 樓美琪, 張學敏, 等. 基于神經元網絡的熱暴露對TC4鈦合金拉伸性能影響預測. 熱加工工藝, 2019, 48(14):128
    [27] Anand P, Rastogi R, Chandra S. A class of new support vector regression models. Appl Soft Comput, 2020, 94: 106446 doi: 10.1016/j.asoc.2020.106446
    [28] Sun H Y, Zhao J, Liu Y A, et al. Microstructure and mechanical properties of a new type burn resistant titanium alloy with lower cost. Rare Met Mater Eng, 2019, 48(6): 1892

    孫歡迎, 趙軍, 劉翊安, 等. 一種新型低成本阻燃鈦合金的微觀組織與力學性能. 稀有金屬材料與工程, 2019, 48(6):1892
  • 加載中
圖(5) / 表(1)
計量
  • 文章訪問數:  483
  • HTML全文瀏覽量:  313
  • PDF下載量:  66
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-10-12
  • 網絡出版日期:  2021-04-16
  • 刊出日期:  2022-06-25

目錄

    /

    返回文章
    返回