<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

RH強制脫碳與自然脫碳工藝生產IF鋼精煉效果分析

袁保輝 劉建華 周海龍 黃基紅 張碩 申志鵬

袁保輝, 劉建華, 周海龍, 黃基紅, 張碩, 申志鵬. RH強制脫碳與自然脫碳工藝生產IF鋼精煉效果分析[J]. 工程科學學報, 2021, 43(8): 1107-1115. doi: 10.13374/j.issn2095-9389.2020.10.10.002
引用本文: 袁保輝, 劉建華, 周海龍, 黃基紅, 張碩, 申志鵬. RH強制脫碳與自然脫碳工藝生產IF鋼精煉效果分析[J]. 工程科學學報, 2021, 43(8): 1107-1115. doi: 10.13374/j.issn2095-9389.2020.10.10.002
YUAN Bao-hui, LIU Jian-hua, ZHOU Hai-long, HUANG Ji-hong, ZHANG Shuo, SHEN Zhi-peng. Refining effect of IF steel produced by RH forced and natural decarburization process[J]. Chinese Journal of Engineering, 2021, 43(8): 1107-1115. doi: 10.13374/j.issn2095-9389.2020.10.10.002
Citation: YUAN Bao-hui, LIU Jian-hua, ZHOU Hai-long, HUANG Ji-hong, ZHANG Shuo, SHEN Zhi-peng. Refining effect of IF steel produced by RH forced and natural decarburization process[J]. Chinese Journal of Engineering, 2021, 43(8): 1107-1115. doi: 10.13374/j.issn2095-9389.2020.10.10.002

RH強制脫碳與自然脫碳工藝生產IF鋼精煉效果分析

doi: 10.13374/j.issn2095-9389.2020.10.10.002
基金項目: 國家自然科學基金資助項目(51874028)
詳細信息
    通訊作者:

    E-mail:liujianhua@metall.ustb.edu.cn

  • 中圖分類號: TF769.9

Refining effect of IF steel produced by RH forced and natural decarburization process

More Information
  • 摘要: 西昌鋼釩廠由于轉爐熱量不足而以轉爐—LF精煉—RH精煉—連鑄工藝生產IF鋼,為探究RH強制脫碳與自然脫碳工藝生產IF鋼精煉效果,采用生產數據統計、氧氮分析、夾雜物自動掃描、掃描電鏡和能譜分析等手段,對不同脫碳工藝對頂渣氧化性以及鋼的潔凈度影響進行了詳細研究。結果表明:(1)與自然脫碳工藝爐次相比,采用強制脫碳工藝的爐次在轉爐結束與RH進站鋼中的平均[O]含量更低;(2)兩種工藝脫碳結束鋼中的[O]含量基本在同一水平;(3)強制脫碳工藝的爐次在RH結束時渣中平均T.Fe的質量分數降低了1.3%。在能滿足RH脫碳效果的前提下,盡量提高轉爐終點鋼液碳含量、降低鋼液氧含量,后續在RH精煉時采用強制吹氧脫碳工藝,適當增大吹氧量來彌補鋼中氧,可顯著降低IF鋼頂渣氧化性。自然脫碳工藝與強制脫碳工藝控制熱軋板T.O含量均比較理想;與自然脫碳工藝相比,強制脫碳工藝可有效降低IF鋼[N]含量,這與強制脫碳工藝真空室內碳氧反應更劇烈所導致的CO氣泡更多和氣液反應面積更大有關。脫碳工藝對IF鋼熱軋板中夾雜物類型、尺寸及數量沒有明顯影響,夾雜物主要由Al2O3夾雜、Al2O3–TiOx夾雜與其他類夾雜物組成,以夾雜物的等效圓直徑表示夾雜物尺寸,以上三類夾雜物平均尺寸分別為4.5、4.4和6.5 μm,且鋼中尺寸在8 μm以下的夾雜物數量占比高于75%。在RH精煉過程中,盡量降低RH脫碳結束鋼中[O]含量,有利于提高鋼液潔凈度。

     

  • 圖  1  試樣加工示意圖

    Figure  1.  Sampling scheme for the hot–rolled sheet

    圖  2  不同RH脫碳工藝鋼中[O]含量和RH結束渣中T.Fe含量分布

    Figure  2.  Distribution of [O] content in molten steel and T.Fe content in the ladle slag after the RH treatment in different RH decarburization processes

    圖  3  不同吹氧量時各工序鋼中[O]和RH結束渣中T.Fe變化

    Figure  3.  Changes of [O] content in molten steel of the different processes and T.Fe content in the ladle slag after the RH treatment for different oxygen blowing conditions

    圖  4  不同脫碳工藝爐次鋼中T.O和[N]含量變化。(a)自然脫碳;(b)強制脫碳

    Figure  4.  Total oxygen and nitrogen changes in different decarburization process heats: (a) natural decarburization process; (b) forced decarburization process

    圖  5  自然脫碳工藝爐次1鋼中夾雜物的典型形貌。(a)Al2O3夾雜物;(b)Al2O3?TiOx夾雜物;(c)CaO?Al2O3?TiOx、MgO?Al2O3、MgO?Al2O3?TiOx夾雜物

    Figure  5.  Typical morphologies of inclusions in the natural decarburization process of Heat 1:(a) Al2O3 inclusions; (b) Al2O3–TiOx inclusions; (c) CaO–Al2O3–TiOx, MgO–Al2O3–TiOx, and MgO–Al2O3 inclusions

    圖  6  強制脫碳工藝爐次4鋼中夾雜物的典型形貌。(a)Al2O3夾雜物;(b)Al2O3?TiOx夾雜物;(c)CaO?Al2O3?TiOx、CaO?Al2O3、CaO?Al2O3?TiOx夾雜物

    Figure  6.  Typical morphologies of inclusions in the forced decarburization process of Heat 4: (a) Al2O3 inclusions; (b) Al2O3–TiOx inclusions; (c) CaO–Al2O3–TiOx, CaO–Al2O3, and CaO–Al2O3–TiOx inclusions

    圖  7  夾雜物的能譜面掃圖。(a)Al2O3夾雜物;(b)Al2O3–TiOx夾雜物;(c)MgO–Al2O3–TiOx夾雜物;(d)CaO–Al2O3–TiOx夾雜物

    Figure  7.  Elemental mapping of inclusions: (a) Al2O3; (b) Al2O3–TiOx; (c) MgO–Al2O3–TiOx; (d) CaO–Al2O3–TiOx

    圖  8  不同脫碳工藝各類夾雜物尺寸分布箱型圖

    Figure  8.  Size changes and distribution of inclusions in different decarburization processes

    圖  9  不同脫碳工藝爐次各類夾雜物數量密度變化。(a)自然脫碳;(b)強制脫碳

    Figure  9.  Number density changes of inclusions in different decarburization process heats: (a) natural decarburization process; (b) forced decarburization process

    圖  10  RH脫碳結束鋼中[O]與鋼中夾雜物的數量關系

    Figure  10.  Relationship between the number of inclusions and [O] content in molten steel after RH decarburization

    表  1  試驗爐次RH過程工藝參數

    Table  1.   Process parameters of experimental heats during the RH treatment

    Decarburization processHeatsOxygen
    blowing/
    m3
    [C] content in
    steel after
    decarburization/
    10?6
    [O] content in
    steel after
    decarburization/
    10?6
    Natural decarburization1 018277
    2 011284
    3 015290
    Forced decarburization4 1513285
    5 1010262
    6 6010306
    下載: 導出CSV

    表  2  自然脫碳與強制脫碳工藝脫碳效果比較

    Table  2.   Comparison of the decarburization effects between the natural and forced decarburization processes

    Decarburization process[C]ave content in steel
    after BOF/10?6
    [C]ave content in steel
    before RH/10?6
    [C]ave content in steel
    after decarburization/10?6
    RH decarburization time/minRH treatment time/min
    Natural decarburization42030511.12032
    Forced decarburization49034411.82133
    Note: The subscript ave represents the average content in this work.
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Wang X H. Non-metallic inclusion control technology for high quality cold rolled steel sheets. Iron Steel, 2013, 48(9): 1

    王新華. 高品質冷軋薄板鋼中非金屬夾雜物控制技術. 鋼鐵, 2013, 48(9):1
    [2] Sun Q, Lin Y, Li W D. Decarburization treatment and inclusion control during RH refining. J Univ Sci Technol Beijing, 2011(S1): 142

    孫群, 林洋, 李偉東. RH精煉脫碳與夾雜物控制. 北京科技大學學報, 2011(S1):142
    [3] Yue F, Cui H, Li P H, et al. Study on the optimum process of refining ULC steel by RH degasser. J Univ Sci Technol Beijing, 2009(S1): 53

    岳峰, 崔衡, 李朋歡, 等. RH冶煉超低碳鋼的最優工藝研究. 北京科技大學學報, 2009(S1):53
    [4] Ma H X, Wang X H, Huang F X, et al. Effect of deoxidation technology on cleanliness of low carbon aluminum killed steel. Iron Steel, 2016, 51(1): 19

    馬煥珣, 王新華, 黃福祥, 等. 脫氧工藝對低碳鋁鎮靜鋼潔凈度的影響. 鋼鐵, 2016, 51(1):19
    [5] Yuan P, Li H B, Luo Y Z, et al. Influence of ladle slag oxidability on the cleanliness of ultra low carbon steel. Chin J Eng, 2016, 38(12): 1702

    苑鵬, 李海波, 羅衍昭, 等. 超低碳鋼頂渣氧化性對鋼液潔凈度的影響. 工程科學學報, 2016, 38(12):1702
    [6] Shu H F, Liu L, Liu X H. Influence of slag denaturalization on inclusions in IF steel. Steelmaking, 2016, 32(3): 55

    舒宏富, 劉瀏, 劉學華. 鋼包頂渣改質對IF鋼夾雜物的影響. 煉鋼, 2016, 32(3):55
    [7] Peng Z G, Qi J H, Yang C W. Influence of slag denaturalization on inclusions in IF steel. Chin J Eng, 2018(S1): 174

    彭著剛, 齊江華, 楊成威. 頂渣改質工藝對IF鋼夾雜物的影響. 工程科學學報, 2018(S1):174
    [8] Wang M, Bao Y P, Cui H, et al. Effect of RH pure circulation on the cleanness of titanium stabilized interstitial-free(Ti-IF) steel. J Univ Sci Technol Beijing, 2011, 33(12): 1448

    王敏, 包燕平, 崔衡, 等. RH純循環對Ti-IF鋼潔凈度的影響. 北京科技大學學報, 2011, 33(12):1448
    [9] Cui H, Chen B, Wang M, et al. Cleanliness control of IF steel during the RH refining process. J Univ Sci Technol Beijing, 2011(S1): 147

    崔衡, 陳斌, 王敏, 等. RH精煉過程中IF鋼潔凈度控制. 北京科技大學學報, 2011(S1):147
    [10] Li Y H, Bao Y P, Shen X W, et al. Inclusions control study of DC06 steel in 300 t ladle. Steelmaking, 2014, 30(2): 38

    李怡宏, 包燕平, 申小維, 等. 300 t鋼包內DC06鋼的夾雜物控制研究. 煉鋼, 2014, 30(2):38
    [11] Cui H, Tian E H, Chen B, et al. Cleanliness study of IF steel by holding in ladles after RH vacuum process. Chin J Eng, 2014(S1): 32

    崔衡, 田恩華, 陳斌, 等. RH真空精煉后IF鋼鎮靜工藝的潔凈度研究. 工程科學學報, 2014(S1):32
    [12] Cui A M, Wang J W, Liu B S, et al. The comparative study on the natural decarburization effect by RH and the forced decarburization effect by RH-TOP. Shou Gang Sci Technol, 2010(4): 24

    崔愛民, 王建偉, 劉柏松, 等. RH精煉自然脫碳和TOP強制脫碳效果的對比研究. 首鋼科技, 2010(4):24
    [13] Li P H, Bao Y P, Yue F, et al. Mechanism of carbon and oxygen reaction in RH decarburization of ultra low oxygen steel. J Univ Sci Technol Beijing, 2011, 33(7): 823

    李朋歡, 包燕平, 岳峰, 等. RH脫碳過程中極低氧鋼水的碳氧反應機理. 北京科技大學學報, 2011, 33(7):823
    [14] Liu B S, Li B H, Zhu G S, et al. Experimental investigation on conventional RH and RH-TOP refining process for IF steel production. Iron Steel, 2010, 45(8): 33

    劉柏松, 李本海, 朱國森, 等. 常規RH和RH-TOP工藝精煉IF鋼試驗研究. 鋼鐵, 2010, 45(8):33
    [15] Li D M, Zhang W H, Lin L P, et al. Application of RH oxygen top-blowing technology in No.2 Steel-making Plant, WISCO. Steelmaking, 2007, 23(6): 5 doi: 10.3969/j.issn.1002-1043.2007.06.002

    李大明, 張文輝, 林立平, 等. RH頂吹氧技術在武鋼第二煉鋼廠的應用. 煉鋼, 2007, 23(6):5 doi: 10.3969/j.issn.1002-1043.2007.06.002
    [16] Yuan B H, Liu J H, Zhou H L, et al. The vacuum decarburization process optimization study of high altitude RH refining equipment. Steelmaking, 2020, 36(4): 31

    袁保輝, 劉建華, 周海龍, 等. 高海拔RH精煉裝置真空脫碳工藝優化研究. 煉鋼, 2020, 36(4):31
    [17] Liu M, Bai F Q, Chen S S, et al. Application of water irrush source standard set in mine water prevention. Miner Eng Res, 2014, 29(3): 30

    劉猛, 白峰青, 陳少帥, 等. 水源判別標準集在礦井防治水中的應用. 礦業工程研究, 2014, 29(3):30
    [18] Xu M, Liu Z C, Yan X, et al. Online detection method for incremental capacity internal resistance consistency. Energy Storage Sci Technol, 2019, 8(6): 1197

    徐敏, 劉中財, 嚴曉, 等. 容量增量內阻一致性在線檢測方法. 儲能科學與技術, 2019, 8(6):1197
    [19] Hong J C, Wang Z P, Liu P. Big-data-based thermal runaway prognosis of battery systems for electric vehicles. Energies, 2017, 10(7): 919 doi: 10.3390/en10070919
    [20] Duan F C, Wu H Z. The production practice of ultra-low-carbon steel in thin slab continuous casting. Ind Heat, 2007, 36(6): 73 doi: 10.3969/j.issn.1002-1639.2007.06.027

    段富春, 吳華章. 薄板坯連鑄超低碳鋼生產實踐. 工業加熱, 2007, 36(6):73 doi: 10.3969/j.issn.1002-1639.2007.06.027
    [21] Song M T, Li M G, Yu H C. Research on refining process of ultra-low-carbon steel for thin slab casting. Steelmaking, 2009, 25(3): 8

    宋滿堂, 李明光, 于華財. 超低碳鋼薄板坯連鑄鋼水精煉工藝的研究. 煉鋼, 2009, 25(3):8
    [22] Shen C, Song C, Shu H F, et al. Research of ULC steel production route combining RH-LF refining and CSP line. Iron Steel, 2008, 43(5): 26

    沈昶, 宋超, 舒宏富, 等. CSP批量生產超低碳鋼的RH-LF雙聯工藝研究. 鋼鐵, 2008, 43(5):26
    [23] Liang Y J, Che Y C. Handle of Inorganic Thermody Namic Data. Shenyang: Northeast University Press, 1993

    梁英教, 車蔭昌. 無機物熱力學數據手冊. 沈陽: 東北大學出版社, 1993
    [24] Cheng G G, Zhao P, Xu X L, et al. Process of vacuum denitrogenation of steel. Iron Steel, 1999, 34(1): 16 doi: 10.3321/j.issn:0449-749X.1999.01.005

    成國光, 趙沛, 徐學祿, 等. 真空下鋼液脫氮工藝研究. 鋼鐵, 1999, 34(1):16 doi: 10.3321/j.issn:0449-749X.1999.01.005
    [25] Cao S. Control of end nitrogen content in smelting of ultra-low nitrogen steel with converter. Hebei Metall, 2015(10): 14

    曹盛. 超低氮鋼轉爐終點氮含量控制. 河北冶金, 2015(10):14
    [26] Kitamura T, Miyamoto K, Tsujino R, et al. Mathematical model for nitrogen desorption and decarburization reaction in vacuum degasser. ISIJ Int, 1996, 36(4): 395 doi: 10.2355/isijinternational.36.395
    [27] Wang M, Bao Y P, Cui H, et al. The composition and morphology evolution of oxide inclusions in Ti-bearing ultra low-carbon steel melt refined in the RH process. ISIJ Int, 2010, 50(11): 1606 doi: 10.2355/isijinternational.50.1606
    [28] Tang F P, Chang G H, Li H, et al. Inclusions in ultra-low carbon steel. Iron Steel, 2007, 42(1): 20

    唐復平, 常桂華, 栗紅, 等. 超低碳鋼鋼中夾雜物的研究. 鋼鐵, 2007, 42(1):20
    [29] Dekkers R, Blanpain B, Wollants P, et al. A morphological comparison between inclusions in aluminium killed steels and deposits in submerged entry nozzle. Steel Res Int, 2003, 74(6): 351 doi: 10.1002/srin.200300197
    [30] Wang M, Bao Y P, Yang Q. Effect of Ferro-titanium alloying process on steel cleanness. J Univ Sci Technol Beijing, 2013, 35(6): 725

    王敏, 包燕平, 楊荃. 鈦合金化過程對鋼液潔凈度的影響. 北京科技大學學報, 2013, 35(6):725
    [31] Pan M, Yu H X, Ji C X, et al. Effect of oxygen blowing during RH treatment on the cleanliness of IF steel. Chin J Eng, 2020, 42(7): 846

    潘明, 于會香, 季晨曦, 等. RH精煉過程中吹氧量對IF鋼潔凈度的影響. 工程科學學報, 2020, 42(7):846
    [32] Gao S, Wang M, Guo J L, et al. Evaluation of cleanliness and distribution of inclusions in the thickness direction of interstitial free(IF) steel slabs. Chin J Eng, 2020, 42(2): 194

    高帥, 王敏, 郭建龍, 等. IF鋼鑄坯厚度方向夾雜物分布及潔凈度評估. 工程科學學報, 2020, 42(2):194
    [33] Stone R P, Jr. Figas R M, Branion R V. Productivity improvements in steelmaking via sensor-based steelmaking process control. Iron Steel Technol, 2006, 3(1): 31
  • 加載中
圖(10) / 表(2)
計量
  • 文章訪問數:  1239
  • HTML全文瀏覽量:  564
  • PDF下載量:  110
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-10-10
  • 網絡出版日期:  2020-12-11
  • 刊出日期:  2021-08-25

目錄

    /

    返回文章
    返回