Refining effect of IF steel produced by RH forced and natural decarburization process
-
摘要: 西昌鋼釩廠由于轉爐熱量不足而以轉爐—LF精煉—RH精煉—連鑄工藝生產IF鋼,為探究RH強制脫碳與自然脫碳工藝生產IF鋼精煉效果,采用生產數據統計、氧氮分析、夾雜物自動掃描、掃描電鏡和能譜分析等手段,對不同脫碳工藝對頂渣氧化性以及鋼的潔凈度影響進行了詳細研究。結果表明:(1)與自然脫碳工藝爐次相比,采用強制脫碳工藝的爐次在轉爐結束與RH進站鋼中的平均[O]含量更低;(2)兩種工藝脫碳結束鋼中的[O]含量基本在同一水平;(3)強制脫碳工藝的爐次在RH結束時渣中平均T.Fe的質量分數降低了1.3%。在能滿足RH脫碳效果的前提下,盡量提高轉爐終點鋼液碳含量、降低鋼液氧含量,后續在RH精煉時采用強制吹氧脫碳工藝,適當增大吹氧量來彌補鋼中氧,可顯著降低IF鋼頂渣氧化性。自然脫碳工藝與強制脫碳工藝控制熱軋板T.O含量均比較理想;與自然脫碳工藝相比,強制脫碳工藝可有效降低IF鋼[N]含量,這與強制脫碳工藝真空室內碳氧反應更劇烈所導致的CO氣泡更多和氣液反應面積更大有關。脫碳工藝對IF鋼熱軋板中夾雜物類型、尺寸及數量沒有明顯影響,夾雜物主要由Al2O3夾雜、Al2O3–TiOx夾雜與其他類夾雜物組成,以夾雜物的等效圓直徑表示夾雜物尺寸,以上三類夾雜物平均尺寸分別為4.5、4.4和6.5 μm,且鋼中尺寸在8 μm以下的夾雜物數量占比高于75%。在RH精煉過程中,盡量降低RH脫碳結束鋼中[O]含量,有利于提高鋼液潔凈度。Abstract: Owing to insufficient converter heat, IF steel is produced via the BOF—LF—RH—CC process in the Xichang Steel & Vanadium Co.LTD of Pangang Group, Xichang, China. To explore the refining effect of IF steel produced via the RH forced and natural decarburization process, this work employed standard analysis methods such as production data statistics, total oxygen and nitrogen analysis, automatic scanning electron microscopy, scanning electron microscopy, and energy spectroscopy. The effects of different decarburization processes on the ladle slag oxidability and cleanliness of steel were investigated in detail. Compared with the natural decarburization process heats, results show that the forced decarburization process heats exhibit (1) lower average [O] content in molten steel after BOF and before RH, (2) a similar level of the [O] content in molten steel after decarburization with that of the natural decarburization process, and (3) 1.3% lower average T.Fe mass fraction in the ladle slag after RH treatment. To ensure the RH decarburization effect, the final carbon content increased and molten steel oxygen content reduced in the converter to the maximum extent. The forced oxygen blowing decarburization process was then used to compensate for the molten steel oxygen content during RH refining by increasing oxygen blowing properly, which can significantly decrease the ladle slag oxidability of IF steel. Both the natural decarburization and forced decarburization processes are ideal for controlling the T.O content of a hot–rolled sheet. Compared with the natural decarburization process, the forced decarburization process can effectively reduce the [N] content of IF steel, which is related to a more violent carbon–oxygen reaction in a vacuum chamber, resulting in a high volume of CO bubbles and a large gas–liquid reaction area. The decarburization process has no obvious influence on the type, size, and number of inclusions in the hot–rolled sheet of IF steel that mainly consist of Al2O3, Al2O3–TiOx, and other inclusions. The average sizes of the above three 4.5, 4.4, and 6.5 μm, respectively, according to the equivalent circle diameter of inclusions. In addition, more than 75% of inclusions are within 8 μm. During the RH refining process, reducing the [O] content in molten steel after RH decarburization to the maximum extent is beneficial to improve the cleanliness of molten steel.
-
Key words:
- IF steel /
- RH refining /
- ladle slag oxidability /
- cleanliness /
- inclusions /
- decarburization process
-
圖 5 自然脫碳工藝爐次1鋼中夾雜物的典型形貌。(a)Al2O3夾雜物;(b)Al2O3?TiOx夾雜物;(c)CaO?Al2O3?TiOx、MgO?Al2O3、MgO?Al2O3?TiOx夾雜物
Figure 5. Typical morphologies of inclusions in the natural decarburization process of Heat 1:(a) Al2O3 inclusions; (b) Al2O3–TiOx inclusions; (c) CaO–Al2O3–TiOx, MgO–Al2O3–TiOx, and MgO–Al2O3 inclusions
圖 6 強制脫碳工藝爐次4鋼中夾雜物的典型形貌。(a)Al2O3夾雜物;(b)Al2O3?TiOx夾雜物;(c)CaO?Al2O3?TiOx、CaO?Al2O3、CaO?Al2O3?TiOx夾雜物
Figure 6. Typical morphologies of inclusions in the forced decarburization process of Heat 4: (a) Al2O3 inclusions; (b) Al2O3–TiOx inclusions; (c) CaO–Al2O3–TiOx, CaO–Al2O3, and CaO–Al2O3–TiOx inclusions
表 1 試驗爐次RH過程工藝參數
Table 1. Process parameters of experimental heats during the RH treatment
Decarburization process Heats Oxygen
blowing/
m3[C] content in
steel after
decarburization/
10?6[O] content in
steel after
decarburization/
10?6Natural decarburization 1 0 18 277 2 0 11 284 3 0 15 290 Forced decarburization 4 15 13 285 5 10 10 262 6 60 10 306 表 2 自然脫碳與強制脫碳工藝脫碳效果比較
Table 2. Comparison of the decarburization effects between the natural and forced decarburization processes
Decarburization process [C]ave content in steel
after BOF/10?6[C]ave content in steel
before RH/10?6[C]ave content in steel
after decarburization/10?6RH decarburization time/min RH treatment time/min Natural decarburization 420 305 11.1 20 32 Forced decarburization 490 344 11.8 21 33 Note: The subscript ave represents the average content in this work. www.77susu.com -
參考文獻
[1] Wang X H. Non-metallic inclusion control technology for high quality cold rolled steel sheets. Iron Steel, 2013, 48(9): 1王新華. 高品質冷軋薄板鋼中非金屬夾雜物控制技術. 鋼鐵, 2013, 48(9):1 [2] Sun Q, Lin Y, Li W D. Decarburization treatment and inclusion control during RH refining. J Univ Sci Technol Beijing, 2011(S1): 142孫群, 林洋, 李偉東. RH精煉脫碳與夾雜物控制. 北京科技大學學報, 2011(S1):142 [3] Yue F, Cui H, Li P H, et al. Study on the optimum process of refining ULC steel by RH degasser. J Univ Sci Technol Beijing, 2009(S1): 53岳峰, 崔衡, 李朋歡, 等. RH冶煉超低碳鋼的最優工藝研究. 北京科技大學學報, 2009(S1):53 [4] Ma H X, Wang X H, Huang F X, et al. Effect of deoxidation technology on cleanliness of low carbon aluminum killed steel. Iron Steel, 2016, 51(1): 19馬煥珣, 王新華, 黃福祥, 等. 脫氧工藝對低碳鋁鎮靜鋼潔凈度的影響. 鋼鐵, 2016, 51(1):19 [5] Yuan P, Li H B, Luo Y Z, et al. Influence of ladle slag oxidability on the cleanliness of ultra low carbon steel. Chin J Eng, 2016, 38(12): 1702苑鵬, 李海波, 羅衍昭, 等. 超低碳鋼頂渣氧化性對鋼液潔凈度的影響. 工程科學學報, 2016, 38(12):1702 [6] Shu H F, Liu L, Liu X H. Influence of slag denaturalization on inclusions in IF steel. Steelmaking, 2016, 32(3): 55舒宏富, 劉瀏, 劉學華. 鋼包頂渣改質對IF鋼夾雜物的影響. 煉鋼, 2016, 32(3):55 [7] Peng Z G, Qi J H, Yang C W. Influence of slag denaturalization on inclusions in IF steel. Chin J Eng, 2018(S1): 174彭著剛, 齊江華, 楊成威. 頂渣改質工藝對IF鋼夾雜物的影響. 工程科學學報, 2018(S1):174 [8] Wang M, Bao Y P, Cui H, et al. Effect of RH pure circulation on the cleanness of titanium stabilized interstitial-free(Ti-IF) steel. J Univ Sci Technol Beijing, 2011, 33(12): 1448王敏, 包燕平, 崔衡, 等. RH純循環對Ti-IF鋼潔凈度的影響. 北京科技大學學報, 2011, 33(12):1448 [9] Cui H, Chen B, Wang M, et al. Cleanliness control of IF steel during the RH refining process. J Univ Sci Technol Beijing, 2011(S1): 147崔衡, 陳斌, 王敏, 等. RH精煉過程中IF鋼潔凈度控制. 北京科技大學學報, 2011(S1):147 [10] Li Y H, Bao Y P, Shen X W, et al. Inclusions control study of DC06 steel in 300 t ladle. Steelmaking, 2014, 30(2): 38李怡宏, 包燕平, 申小維, 等. 300 t鋼包內DC06鋼的夾雜物控制研究. 煉鋼, 2014, 30(2):38 [11] Cui H, Tian E H, Chen B, et al. Cleanliness study of IF steel by holding in ladles after RH vacuum process. Chin J Eng, 2014(S1): 32崔衡, 田恩華, 陳斌, 等. RH真空精煉后IF鋼鎮靜工藝的潔凈度研究. 工程科學學報, 2014(S1):32 [12] Cui A M, Wang J W, Liu B S, et al. The comparative study on the natural decarburization effect by RH and the forced decarburization effect by RH-TOP. Shou Gang Sci Technol, 2010(4): 24崔愛民, 王建偉, 劉柏松, 等. RH精煉自然脫碳和TOP強制脫碳效果的對比研究. 首鋼科技, 2010(4):24 [13] Li P H, Bao Y P, Yue F, et al. Mechanism of carbon and oxygen reaction in RH decarburization of ultra low oxygen steel. J Univ Sci Technol Beijing, 2011, 33(7): 823李朋歡, 包燕平, 岳峰, 等. RH脫碳過程中極低氧鋼水的碳氧反應機理. 北京科技大學學報, 2011, 33(7):823 [14] Liu B S, Li B H, Zhu G S, et al. Experimental investigation on conventional RH and RH-TOP refining process for IF steel production. Iron Steel, 2010, 45(8): 33劉柏松, 李本海, 朱國森, 等. 常規RH和RH-TOP工藝精煉IF鋼試驗研究. 鋼鐵, 2010, 45(8):33 [15] Li D M, Zhang W H, Lin L P, et al. Application of RH oxygen top-blowing technology in No.2 Steel-making Plant, WISCO. Steelmaking, 2007, 23(6): 5 doi: 10.3969/j.issn.1002-1043.2007.06.002李大明, 張文輝, 林立平, 等. RH頂吹氧技術在武鋼第二煉鋼廠的應用. 煉鋼, 2007, 23(6):5 doi: 10.3969/j.issn.1002-1043.2007.06.002 [16] Yuan B H, Liu J H, Zhou H L, et al. The vacuum decarburization process optimization study of high altitude RH refining equipment. Steelmaking, 2020, 36(4): 31袁保輝, 劉建華, 周海龍, 等. 高海拔RH精煉裝置真空脫碳工藝優化研究. 煉鋼, 2020, 36(4):31 [17] Liu M, Bai F Q, Chen S S, et al. Application of water irrush source standard set in mine water prevention. Miner Eng Res, 2014, 29(3): 30劉猛, 白峰青, 陳少帥, 等. 水源判別標準集在礦井防治水中的應用. 礦業工程研究, 2014, 29(3):30 [18] Xu M, Liu Z C, Yan X, et al. Online detection method for incremental capacity internal resistance consistency. Energy Storage Sci Technol, 2019, 8(6): 1197徐敏, 劉中財, 嚴曉, 等. 容量增量內阻一致性在線檢測方法. 儲能科學與技術, 2019, 8(6):1197 [19] Hong J C, Wang Z P, Liu P. Big-data-based thermal runaway prognosis of battery systems for electric vehicles. Energies, 2017, 10(7): 919 doi: 10.3390/en10070919 [20] Duan F C, Wu H Z. The production practice of ultra-low-carbon steel in thin slab continuous casting. Ind Heat, 2007, 36(6): 73 doi: 10.3969/j.issn.1002-1639.2007.06.027段富春, 吳華章. 薄板坯連鑄超低碳鋼生產實踐. 工業加熱, 2007, 36(6):73 doi: 10.3969/j.issn.1002-1639.2007.06.027 [21] Song M T, Li M G, Yu H C. Research on refining process of ultra-low-carbon steel for thin slab casting. Steelmaking, 2009, 25(3): 8宋滿堂, 李明光, 于華財. 超低碳鋼薄板坯連鑄鋼水精煉工藝的研究. 煉鋼, 2009, 25(3):8 [22] Shen C, Song C, Shu H F, et al. Research of ULC steel production route combining RH-LF refining and CSP line. Iron Steel, 2008, 43(5): 26沈昶, 宋超, 舒宏富, 等. CSP批量生產超低碳鋼的RH-LF雙聯工藝研究. 鋼鐵, 2008, 43(5):26 [23] Liang Y J, Che Y C. Handle of Inorganic Thermody Namic Data. Shenyang: Northeast University Press, 1993梁英教, 車蔭昌. 無機物熱力學數據手冊. 沈陽: 東北大學出版社, 1993 [24] Cheng G G, Zhao P, Xu X L, et al. Process of vacuum denitrogenation of steel. Iron Steel, 1999, 34(1): 16 doi: 10.3321/j.issn:0449-749X.1999.01.005成國光, 趙沛, 徐學祿, 等. 真空下鋼液脫氮工藝研究. 鋼鐵, 1999, 34(1):16 doi: 10.3321/j.issn:0449-749X.1999.01.005 [25] Cao S. Control of end nitrogen content in smelting of ultra-low nitrogen steel with converter. Hebei Metall, 2015(10): 14曹盛. 超低氮鋼轉爐終點氮含量控制. 河北冶金, 2015(10):14 [26] Kitamura T, Miyamoto K, Tsujino R, et al. Mathematical model for nitrogen desorption and decarburization reaction in vacuum degasser. ISIJ Int, 1996, 36(4): 395 doi: 10.2355/isijinternational.36.395 [27] Wang M, Bao Y P, Cui H, et al. The composition and morphology evolution of oxide inclusions in Ti-bearing ultra low-carbon steel melt refined in the RH process. ISIJ Int, 2010, 50(11): 1606 doi: 10.2355/isijinternational.50.1606 [28] Tang F P, Chang G H, Li H, et al. Inclusions in ultra-low carbon steel. Iron Steel, 2007, 42(1): 20唐復平, 常桂華, 栗紅, 等. 超低碳鋼鋼中夾雜物的研究. 鋼鐵, 2007, 42(1):20 [29] Dekkers R, Blanpain B, Wollants P, et al. A morphological comparison between inclusions in aluminium killed steels and deposits in submerged entry nozzle. Steel Res Int, 2003, 74(6): 351 doi: 10.1002/srin.200300197 [30] Wang M, Bao Y P, Yang Q. Effect of Ferro-titanium alloying process on steel cleanness. J Univ Sci Technol Beijing, 2013, 35(6): 725王敏, 包燕平, 楊荃. 鈦合金化過程對鋼液潔凈度的影響. 北京科技大學學報, 2013, 35(6):725 [31] Pan M, Yu H X, Ji C X, et al. Effect of oxygen blowing during RH treatment on the cleanliness of IF steel. Chin J Eng, 2020, 42(7): 846潘明, 于會香, 季晨曦, 等. RH精煉過程中吹氧量對IF鋼潔凈度的影響. 工程科學學報, 2020, 42(7):846 [32] Gao S, Wang M, Guo J L, et al. Evaluation of cleanliness and distribution of inclusions in the thickness direction of interstitial free(IF) steel slabs. Chin J Eng, 2020, 42(2): 194高帥, 王敏, 郭建龍, 等. IF鋼鑄坯厚度方向夾雜物分布及潔凈度評估. 工程科學學報, 2020, 42(2):194 [33] Stone R P, Jr. Figas R M, Branion R V. Productivity improvements in steelmaking via sensor-based steelmaking process control. Iron Steel Technol, 2006, 3(1): 31 -