Three-dimensional stability evaluation of shallow loess landslides under rainfall and earthquake conditions
-
摘要: 以蘭州市大沙溝流域淺層黃土滑坡為研究對象,整合降雨滲透模型到黃土斜坡三維確定性模型,評價不同降雨和地震耦合效應下淺層黃土滑坡穩定性,并用混淆矩陣法和受試者工作特征曲線法(ROC)評價穩定性評價預測的結果。研究結果發現,耦合降雨入滲和地震的三維確定性模型,對流域尺度淺層黃土滑坡穩定性評價具有較好效果,能作為降雨和地震誘發黃土滑坡災害評價和早期預警的工具,對加強不同尺度極端事件下黃土滑坡災害時空災害評價和預測具有重要參考價值。Abstract: Loess is widely distributed in the Northwest Plateau of China. One-third of the landslides in China occur in the loess area. Shallow loess landslides are especially widespread and frequent geological disasters, causing serious casualties and huge property damage. Under rainfall and loading, loess is prone to structural collapse and strength reduction. Therefore, shallow loess landslides distribute widely and occur frequently. Usually, rainfall and earthquakes are the frequent and active triggers for loess landslides. In recent years, a large number of loess landslides have been induced by the coupling of rainfall and earthquakes on the Loess Plateau. Although the coupling effect of earthquake and rainfall will seriously aggravate the instability probability and disaster risk of shallow loess landslides, there is still a lack of quantitative disaster evaluation research on such landslide events. This study chose the shallow loess landslide as the research object in the Dashagou catchment of Lanzhou city. The rainfall penetration model was integrated into a three-dimensional deterministic model of the loess slope, and the stability of the shallow loess landslide was evaluated in the study area with different rainfall and seismic coupling effects. The confusion matrix and the receiver operating characteristic (ROC) curve were used to evaluate the results of the stability evaluation prediction. Results of this study reveal that the integration of a three-dimensional deterministic model of rainfall infiltration and earthquake effects has a good impact on the stability evaluation of shallow loess landslides at the watershed scale. Moreover, this model can be used as a tool for the assessment and early warning of rainfall and earthquake-induced loess landslides. The employment of the three-dimensional deterministic model considering a complicated slope and rainfall situation has great significance in the acquisition of results that are more accordant with the actual situation. It is of great reference value to strengthen the spatiotemporal disaster assessment and prediction of loess landslide disasters under different scales of extreme events.
-
Key words:
- shallow loess landslide /
- earthquake /
- rainfall /
- infiltration simulation /
- stability evaluation
-
圖 9 失穩斜坡體積統計圖(a)和穩定性分級面積堆積圖(b)(圖中N指無雨,M指中雨,H指大雨,如M0.05指中雨和0.05地震加速度系數耦合情況)
Figure 9. Volume statistics of unstable slopes (a) and stacking diagrams of the graded area of stability (b) (N refers to no rain, M refers to moderate rain, and H refers to heavy rain. For example, M0.05 refers to the coupling of moderate rain and 0.05 earthquake acceleration coefficient)
圖 11 ROC曲線評價結果。(a)降雨情況;(b)地震情況;(c)耦合情況(圖中N指無雨,M指中雨,H指大雨。如M0.05指中雨和0.05地震加速度系數耦合情況)
Figure 11. ROC curve evaluation results: (a) rainfall; (b) earthquake; (c) coupling (N refers to no rain, M refers to moderate rain, and H refers to heavy rain, M0.05 refers to the coupling of moderate rain and 0.05 earthquake acceleration coefficient)
表 1 敏感性分析參數變化范圍
Table 1. Variation range of sensitivity analysis parameters
Item R /m C/kPa A/m2 W/N ? /(°) Keq u/kPa Range 3–15 10–50 10–2.0×104 100–2.0×106 10–30 0–0.2 ?50–100 Standard 9 30 1.0×104 1.1×106 20 0.1 25 表 2 土參數取值表
Table 2. Soil parameter value table
C /
kPaγ /
(kN?m?3)?/
(°)Permeability coefficient,
k /(m?s?1)Hydraulic diffusivity,
hd /(m3?s?1)30 15 29 2.4×10?6 2.4×10?4 www.77susu.com -
參考文獻
[1] Zhang F Y, Chen W W, Liu G, et al. Relationships between landslide types and topographic attributes in a loess catchment, China. J Mt Sci, 2012, 9(6): 742 doi: 10.1007/s11629-012-2377-7 [2] Xu Z J, Lin Z G, Zhang M S. Loess in China and loess landslides. Chin J Rock Mech Eng, 2007, 26(7): 1297 doi: 10.3321/j.issn:1000-6915.2007.07.001徐張建, 林在貫, 張茂省. 中國黃土與黃土滑坡. 巖石力學與工程學報, 2007, 26(7):1297 doi: 10.3321/j.issn:1000-6915.2007.07.001 [3] Zhang M S, Li T L. Triggering factors and forming mechanism of loess landslides. J Eng Geol, 2011, 19(4): 530 doi: 10.3969/j.issn.1004-9665.2011.04.014張茂省, 李同錄. 黃土滑坡誘發因素及其形成機理研究. 工程地質學報, 2011, 19(4):530 doi: 10.3969/j.issn.1004-9665.2011.04.014 [4] Lyu H M, Shen J, Arulrajah A. Assessment of geohazards and preventative countermeasures using AHP incorporated with GIS in Lanzhou, China. Sustainability, 2018, 10(2): 304 doi: 10.3390/su10020304 [5] Wu W J. Landslide and debris flow hazards in City of Tianshui. Hydrogeol Eng Geol, 2003, 30(5): 75 doi: 10.3969/j.issn.1000-3665.2003.05.017吳瑋江. 天水市滑坡泥石流災害. 水文地質工程地質, 2003, 30(5):75 doi: 10.3969/j.issn.1000-3665.2003.05.017 [6] Xin P, Wu S R, Shi J S, et al. A predictive study of the hazardousness of landslides in loess hilly region based on rainfall response: A case study of Linyou County, Baoji city. Acta Geosci Sin, 2012, 33(3): 349辛鵬, 吳樹仁, 石菊松, 等. 基于降雨響應的黃土丘陵區滑坡危險性預測研究— —以寶雞市麟游縣為例. 地球學報, 2012, 33(3):349 [7] Xu Y R, Allen M B, Zhang W H, et al. Landslide characteristics in the loess plateau, northern China. Geomorphology, 2020, 359: 107150 doi: 10.1016/j.geomorph.2020.107150 [8] Sun P, Li R J, Jiang H, et al. Earthquake-triggered landslides by the 1718 Tongwei earthquake in Gansu Province, northwest China. Bull Eng Geol Environ, 2017, 76(4): 1281 doi: 10.1007/s10064-016-0949-4 [9] Zhang D X, Wang G H. Study of the 1920 Haiyuan earthquake-induced landslides in loess (China). Eng Geol, 2007, 94(1-2): 76 doi: 10.1016/j.enggeo.2007.07.007 [10] Qi J L, Zhao G W, Zhang Z Z, et al. Analysis on characteristics and mechanism of the seismic damage in loess in Yongdeng m s5.8 earthquake region, Gansu province. Northwest Seismol J, 1998, 20(1): 70齊吉琳, 趙國武, 張振中, 等. 甘肅永登5.8級地震黃土震害特征及機理分析. 西北地震學報, 1998, 20(1):70 [11] Xu S H, Wu Z J, Sun J J, et al. Study of the characteristics and inducing mechanism of typical earthquake landslidesof the Minxian-Zhangxian MS6.6 earthquake. China Earthq Eng J, 2013, 35(3): 471徐舜華, 吳志堅, 孫軍杰, 等. 岷縣漳縣6.6級地震典型滑坡特征及其誘發機制. 地震工程學報, 2013, 35(3):471 [12] Shen L L, Liu L Y, Xu C, et al. Multi-models based landslide susceptibility evaluation—illustrated with landslides triggered by Minxian earthquake. J Eng Geol, 2016, 24(1): 19沈玲玲, 劉連友, 許沖, 等. 基于多模型的滑坡易發性評價——以甘肅岷縣地震滑坡為例. 工程地質學報, 2016, 24(1):19 [13] Wang L M. Mechanism and risk evaluation of sliding flow triggered by liquefaction of loess deposit during earthquakes. Chin J Geotech Eng, 2020, 42(1): 1王蘭民. 黃土地層大規模地震液化滑移的機理與風險評估. 巖土工程學報, 2020, 42(1):1 [14] Wang G L, Li T L, Xing X L, et al. Research on loess flow-slides induced by rainfall in July 2013 in Yan'an, NW China. Environ Earth Sci, 2015, 73(12): 7933 doi: 10.1007/s12665-014-3951-9 [15] Lin C W, Liu S H, Lee S Y, et al. Impacts of the Chi-Chi earthquake on subsequent rainfall-induced landslides in central Taiwan. Eng Geol, 2006, 86(2-3): 87 doi: 10.1016/j.enggeo.2006.02.010 [16] Wang H B, Sassa K, Xu W Y. Analysis of a spatial distribution of landslides triggered by the 2004 Chuetsu earthquakes of Niigata Prefecture, Japan. Nat Hazards, 2006, 41(1): 43 [17] Saha A K, Gupta R P, Sarkar I, et al. An approach for GIS-based statistical landslide susceptibility zonation: With a case study in the Himalayas. Landslides, 2005, 2(1): 61 doi: 10.1007/s10346-004-0039-8 [18] Saha A K, Gupta R P, Arora M K. GIS-based landslide hazard zonation in the Bhagirathi (Ganga) valley, Himalayas. Int J Remote Sens, 2002, 23(2): 357 doi: 10.1080/01431160010014260 [19] Zhang F Y, Liu G, Chen W W, et al. Large landslide susceptibility assessment by multivariate statistical analysis in the Longnan area affected by the Wenchuan earthquake. J Central South Univ Sci Technol, 2012, 43(9): 3595張帆宇, 劉高, 諶文武, 等. 基于多變量統計分析的大型滑坡敏感性評價: 以汶川地震影響的隴南地區為例. 中南大學學報(自然科學版), 2012, 43(9):3595 [20] Baum R L, Savage W Z, Godt J W. TRIGRS—A fortran program for transient rainfall infiltration and grid-based regional slope-stability analysis[R/OL]. US Geological Survey Open-File Report. (2002-02-15) [2021-5-1].https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.593.6092&rep=rep1&type=pdf [21] Dietrich W E, Bellugi D, De Asua R R. Validation of the shallow landslide model, SHALSTAB, for forest management. Water science and Application, 2001, 2: 195 [22] Montgomery D R, Dietrich W E. A physically based model for the topographic control on shallow landsliding. Water Resour Res, 1994, 30(4): 1153 doi: 10.1029/93WR02979 [23] Xie M W, Esaki T, Qiu C, et al. Geographical information system-based computational implementation and application of spatial three-dimensional slope stability analysis. Comput Geotech, 2006, 33(4-5): 260 doi: 10.1016/j.compgeo.2006.07.003 [24] Bromhead E N, Ibsen M L, Papanastassiou X, et al. Three-dimensional stability analysis of a coastal landslide at Hanover Point, Isle of Wight. Q J Eng Geol Hydrogeol, 2002, 35(1): 79 doi: 10.1144/qjegh.35.1.79 [25] Xie M W, Esaki T, Zhou G Y. GIS-based probabilistic mapping of landslide hazard using a three-dimensional deterministic model. Nat Hazards, 2004, 33(2): 265 doi: 10.1023/B:NHAZ.0000037036.01850.0d [26] Reid M, Christian S, Brien D, et al. Scoops3D-software to Analyze Three-dimensional Slope Stability throughout a Digital Landscape. Reston: US Geological Survey Press, 2015 [27] Reid M E, Sisson T W, Brien D L. Volcano collapse promoted by hydrothermal alteration and edifice shape, Mount Rainier, Washington. Geology, 2001, 29(9): 779 doi: 10.1130/0091-7613(2001)029<0779:VCPBHA>2.0.CO;2 [28] Tran T V, Alvioli M, Lee G, et al. Three-dimensional, time-dependent modeling of rainfall-induced landslides over a digital landscape: A case study. Landslides, 2018, 15(6): 1071 doi: 10.1007/s10346-017-0931-7 [29] Alvioli M, Baum R L. Parallelization of the TRIGRS model for rainfall-induced landslides using the message passing interface. Environ Model Softw, 2016, 81: 122 doi: 10.1016/j.envsoft.2016.04.002 [30] Luna B Q, Rema?tre A, van Asch T W J, et al. Analysis of debris flow behavior with a one dimensional run-out model incorporating entrainment. Eng Geol, 2012, 128: 63 doi: 10.1016/j.enggeo.2011.04.007 [31] Wang G X, Xu J L, Liu G D, et al. Landslide Science and Landslide Control Technology. Beijing: China Railway Publishing House, 2004王恭先, 徐峻嶺, 劉光代, 等. 滑坡學與滑坡防治技術. 北京: 中國鐵道出版社, 2004 [32] Liu Y, Tian W T, Su H J, et al. Correlation between characteristics of Yellow River terraces and seismic ground motion parameters. China Earthq Eng J, 2019, 41(5): 1234 doi: 10.3969/j.issn.1000-0844.2019.05.1234柳煜, 田文通, 蘇鶴軍, 等. 黃河階地特征與地震動參數的相關性研究. 地震工程學報, 2019, 41(5):1234 doi: 10.3969/j.issn.1000-0844.2019.05.1234 [33] Wen B P, Yan Y J. Influence of structure on shear characteristics of the unsaturated loess in Lanzhou, China. Eng Geol, 2014, 168: 46 doi: 10.1016/j.enggeo.2013.10.023 [34] Fredlund D G, Xing A. Equations for the soi?water characteristic curve. Can Geotechnical J, 1994, 31(4): 521 doi: 10.1139/t94-061 [35] Xin X, Zhang F Y. Application of a 3D deterministic model for predicting shallow loess landslide stability. Chin J Eng, 2018, 40(4): 397辛星, 張帆宇. 三維確定性模型在淺層黃土滑坡穩定性預測中的應用. 工程科學學報, 2018, 40(4):397 [36] Cui B, Wang G J, Liu W L, et al. Seepage and stability analysis of pore air pressure on a high-bench dump under heavy rainfall. Chin J Eng, 2021, 43(3): 365崔博, 王光進, 劉文連, 等. 強降雨條件下孔隙氣壓作用的高臺階排土場滲流與穩定性. 工程科學學報, 2021, 43(3):365 [37] Fawcett T. An introduction to ROC analysis. Pattern Recognit Lett, 2006, 27(8): 861 doi: 10.1016/j.patrec.2005.10.010 -