Influence of Zn in the iron ore sintering flue gas on the removal of NOx and dioxins by V2O5–WO3/TiO2 catalyst
-
摘要: V2O5?WO3/TiO2(VWTi)催化劑可以同時脫除鐵礦燒結煙氣中的NOx和二噁英,但復雜的煙氣成分會導致催化劑失活。本文采用浸漬法對VWTi 催化劑進行ZnCl2、ZnO和ZnSO4中毒實驗。模擬燒結煙氣條件,研究了在VWTi催化劑表面負載不同形態Zn對其同時脫除NOx和二噁英(以氯苯作為模擬物)性能的影響,分析了中毒前后催化劑表面活性物質的理化性質,并對中毒催化劑開展了再生實驗。結果表明:不同Zn物種對VWTi催化劑同時脫除NOx和氯苯(CB)均具有失活作用。Zn物種會引起催化劑表面顆粒輕微團聚,表面酸性位點數量減少,表面V的還原性減弱,表面化學吸附氧比例,以及V5+和V4+的物質的量比值降低。再生實驗結果表明:酸洗可以在一定程度上恢復中毒催化劑的催化活性,但水洗不能恢復中毒催化劑的活性。研究發現Zn鹽中毒作用機理為:Zn2+與催化劑表面酸性位點V=O和V?OH反應形成V?O?Zn,對NH3與CB的吸附產生不利影響,造成催化劑中毒失活,ZnSO4中的
${\rm{SO}}_4^{2-} $ 可以為NH3和CB的吸附轉化提供新的酸性位點,減輕中毒效果,ZnCl2中的Cl?會在反應后產生副產物HCl,造成催化劑表面更多活性位點中毒,加深中毒效果。-
關鍵詞:
- V2O5–WO3/TiO2 /
- Zn物種 /
- 中毒 /
- NOx /
- 二噁英
Abstract: Iron ore sintering is a process in which fuel, flux, and iron ore powders are mixed and sintered into a block under incomplete melting conditions. The flue gas from iron ore sintering process is one of the largest sources of nitrogen oxide (NOx) and dioxin emissions in industries. The V2O5–WO3/TiO2 (VWTi) catalyst can simultaneously remove NOx and dioxins, but the presence of the complex flue gas results in the deactivation of the catalysts. In response to this challenge, this study carried out experiments for ZnCl2, ZnO, and ZnSO4 poisoning over the VWTi catalyst via wet impregnation method. The effects of the different Zn species on the simultaneous removal of NOx and dioxins (chlorobenzene was used as the simulant for dioxins) by the VWTi catalyst were studied under simulated conditions of the iron ore sintering flue gas. The surface physicochemical properties of the fresh and poisoned catalysts were characterized to reveal the deactivation mechanism, and the regeneration experiments of the poisoned catalysts were investigated. Results showed that deactivation through catalytic denitrification and chlorobenzene (CB) catalytic degradation processes could be observed in different Zn-containing catalysts. The poisoning effect was more obvious with the increase of Zn content, and the effects of deactivation were as follows: ZnCl2>ZnO>ZnSO4. Results from physical and chemical analyses indicated that Zn species had a significant influence on the chemical environment of the active substances on the surface of the catalysts. Zn species caused a slight agglomeration of particles on the surface of the catalysts, a decrease in the number of surface acid sites, a reduction in the reducibility of surface V species, and a decrease in the chemisorbed oxygen ratio and the molar ratio of n(V5+)/n(V4+). The regeneration experiments confirmed that employing the dilute sulfuric acid solution washing method was effective for recovering the catalytic activity, whereas the water washing method failed to restore the catalytic activity. The mechanism of Zn salt poisoning is as follows: Zn2+ reacts with the acid sites V=O and V?OH on the surface of the catalyst to form V?O?Zn, which adversely affects the adsorption of NH3 and CB, resulting in the catalyst poisoning and deactivation. The${\rm{SO}}_4^{2-} $ in ZnSO4 provides a new acidic site for the adsorption and transformation of NH3 and CB alleviating the poisoning effect. The Cl? in ZnCl2 produces HCl as a by-product after the reaction, resulting in more active sites poisoning on the surface of the catalyst and deepening the poisoning effect.-
Key words:
- V2O5–WO3/TiO2 /
- Zn species /
- poisoning /
- NOx /
- dioxin
-
表 1 新鮮催化劑和Zn2+中毒催化劑的BET表面積、孔容積和孔徑
Table 1. Brunauer–Emmett–Teller surface area, pore volume, and pore size of fresh and Zn2+-poisoned catalysts
Samples Surface area / (m2·g?1) Pore volume / (cm3·g?1) Pore size / nm Fresh 38.25 0.185 19.38 ZC2 37.35 0.179 19.19 ZO2 37.44 0.181 19.39 ZS2 33.26 0.172 20.45 表 2 新鮮催化劑和Zn2+中毒催化劑V XPS結果
Table 2. X-ray photoelectron spectroscopy results of V in fresh and Zn2+-poisoned catalysts
V2p3/2 Fresh ZC2 ZO2 ZS2 Ebv/eV ω/% Ebv/eV ω/% Ebv/eV ω/% Ebv/eV ω/% V3+ 515.3 6.22 515.4 8.25 515.2 7.14 515.4 5.88 V4+ 516.5 31.56 516.5 40.36 516.5 38.09 516.4 35.29 V5+ 517.4 62.21 517.2 51.37 517.3 54.76 517.1 58.82 V5+/V4+ 1.97 1.27 1.43 1.67 表 3 中毒催化劑再生前后XRF結果
Table 3. X-ray fluorescence results of the poisoned catalysts, before and after regeneration
% Samples Mass content of different elements/% Ti Si Al W S V Ca Zn Fresh 42.43 6.11 2.00 2.11 0.84 1.08 1.37 — ZC2 41.8 5.66 1.88 2.05 0.969 1.07 1.35 1.03 ZC2?W 43.41 5.89 1.91 2.14 0.314 1.08 1.20 0.78 ZC2?A 44.87 5.95 1.75 2.17 0.32 0.75 1.18 0.06 ZO2 42.44 5.80 1.91 2.06 0.756 1.08 1.35 1.27 ZO2?W 43.62 5.86 1.94 2.14 0.305 1.08 1.22 0.98 ZO2?A 44.68 5.91 1.73 2.22 0.31 0.77 1.20 0.05 www.77susu.com -
參考文獻
[1] Kong M, Liu Q C, Zhou J, et al. Effect of different potassium species on the deactivation of V2O5?WO3/TiO2 SCR catalyst: Comparison of K2SO4, KCl and K2O. Chem Eng J, 2018, 348: 637 doi: 10.1016/j.cej.2018.05.045 [2] Xing Y, Zhang W B, Su W, et al. Research of ultra-low emission technologies of the iron and steel industry in China. Chin J Eng, 2021, 43(1): 1邢奕, 張文伯, 蘇偉, 等. 中國鋼鐵行業超低排放之路. 工程科學學報, 2021, 43(1):1 [3] Yan B J, Xing Y, Lu P, et al. A critical review on the research progress of multi-pollutant collaborative control technologies of sintering flue gas in the iron and steel industry. Chin J Eng, 2018, 40(7): 767閆伯駿, 邢奕, 路培, 等. 鋼鐵行業燒結煙氣多污染物協同凈化技術研究進展. 工程科學學報, 2018, 40(7):767 [4] Yu Y K, He C, Chen J S, et al. Deactivation mechanism of de-NOx catalyst (V2O5?WO3/TiO2) used in coal fired power plant. J Fuel Chem Technol, 2012, 40(11): 1359 doi: 10.1016/S1872-5813(13)60003-1 [5] Wu S L, Zhang Y Z, Su B, et al. Analysis of main factors affecting NOx emissions in sintering process. Chin J Eng, 2017, 39(5): 693吳勝利, 張永忠, 蘇博, 等. 影響燒結工藝過程NOx排放質量濃度的主要因素解析. 工程科學學報, 2017, 39(5):693 [6] Wang J, Shen B X, Liu T, et al. Deactivation and regeneration of SCR catalyst based on V2O5?TiO2. Environ Sci Technol, 2010, 33(9): 97王靜, 沈伯雄, 劉亭, 等. 釩鈦基SCR催化劑中毒及再生研究進展. 環境科學與技術, 2010, 33(9):97 [7] Wang C, Li C M, Li Y J, et al. Destructive influence of cement dust on the structure and DeNOx performance of V-based SCR catalyst. Ind Eng Chem Res, 2019, 58(43): 19847 doi: 10.1021/acs.iecr.9b04268 [8] Liu J D, Huang Z G, Li Z, et al. Ce modification on Mn/TiO2/cordierite monolithic catalyst for low-temperature NOx reduction. Chem J Chin Univ, 2014, 35(3): 589劉建東, 黃張根, 李哲, 等. Ce對Mn/TiO2/堇青石整體低溫脫硝選擇性催化還原催化劑的改性. 高等學校化學學報, 2014, 35(3):589 [9] Chen L, Li J H, Ge M F. The poisoning effect of alkali metals doping over nano V2O5?WO3/TiO2 catalysts on selective catalytic reduction of NOx by NH3. Chem Eng J, 2011, 170(2-3): 531 doi: 10.1016/j.cej.2010.11.020 [10] Li X, Li J H, Peng Y, et al. Regeneration of commercial SCR catalysts: probing the existing forms of arsenic oxide. Environ Sci Technol, 2015, 49(16): 9971 doi: 10.1021/acs.est.5b02257 [11] Dahlin S, Nilsson M, B?ckstr?m D, et al. Multivariate analysis of the effect of biodiesel-derived contaminants on V2O5?WO3/TiO2 SCR catalysts. Appl Catal B Environ, 2016, 183: 377 doi: 10.1016/j.apcatb.2015.10.045 [12] Guo R T, Lu C Z, Pan W G, et al. A comparative study of the poisoning effect of Zn and Pb on Ce/TiO2 catalyst for low temperature selective catalytic reduction of NO with NH3. Catal Commun, 2015, 59: 136 doi: 10.1016/j.catcom.2014.10.006 [13] Peng Y, Wang D, Li B et al. Impacts of Pb and SO2 poisoning on CeO2?WO3/TiO2? SiO2 SCR catalyst. Environ Sci Technol, 2017, 51(20): 11943 doi: 10.1021/acs.est.7b03309 [14] Yan L J, Wang F L, Wang P L, et al. Unraveling the unexpected offset effects of Cd and SO2 deactivation over CeO2?WO3/TiO2 catalysts for NOx reduction. Environ Sci Technol, 2020, 54(12): 7697 doi: 10.1021/acs.est.0c01749 [15] Kong M, Liu Q C, Zhu B H, et al. Synergy of KCl and Hgel on selective catalytic reduction of NO with NH3 over V2O5? WO3/TiO2 catalysts. Chem Eng J, 2015, 264: 815 doi: 10.1016/j.cej.2014.12.038 [16] Qian L X, Chun T J, Long H M, et al. Emission reduction research and development of PCDD/Fs in the iron ore sintering. Process Saf Environ Prot, 2018, 117: 82 doi: 10.1016/j.psep.2018.04.014 [17] Chun T J, Zhu D Q. New process of pellets-metallized sintering process (PMSP) to treat zinc-bearing dust from iron and steel company. Metall Mater Trans B, 2015, 46(1): 1 doi: 10.1007/s11663-014-0243-4 [18] Ji S S, Li X D, Yu M F, et al. Oxidation of PCDD/Fs over V2O5?TiO2-based catalyst. J Zhejiang Univ Eng Sci, 2014, 48(10): 1746紀莎莎, 李曉東, 俞明鋒, 等. V2O5?WO3/TiO2 催化劑降解氣相二惡英的研究. 浙江大學學報(工學版), 2014, 48(10):1746 [19] Yang C C, Chang S H, Hong B Z, et al. Innovative PCDD/F-containing gas stream generating system applied in catalytic decomposition of gaseous dioxins over V2O5?WO3/TiO2-based catalysts. Chemosphere, 2008, 73(6): 890 doi: 10.1016/j.chemosphere.2008.07.027 [20] Weng X L, Xue Y H, Chen J K, et al. Elimination of chloroaromatic congeners on a commercial V2O5?WO3/TiO2 catalyst: The effect of heavy metal Pb. J Hazard Mater, 2020, 387: 121705 doi: 10.1016/j.jhazmat.2019.121705 [21] Sprenger D, Bach H, Meisel W, et al. XPS study of leached glass surfaces. J Non-Cryst Solids, 1990, 126(1? 2): 111 [22] Topsoe N Y, Topsoe H, Dumesic J A. Vanadia/titania catalysts for selective catalytic reduction (SCR) of nitric-oxide by ammonia: I. combined temperature-programmed in-situ FTIR and on-line mass-spectroscopy studies. J Catal, 1995, 151(1): 226 doi: 10.1006/jcat.1995.1024 [23] Alemany L J, Lietti L, Ferlazzo N, et al. Reactivity and physicochemical characterization of V2O5?WO3/TiO2 de-NOx catalysts. J Catal, 1995, 155(1): 117 doi: 10.1006/jcat.1995.1193 [24] Ramis G, Yi L, Busca G. Ammonia activation over catalysts for the selective catalytic reduction of NOx and the selective catalytic oxidation of NH3. An FT-IR study. Catal Today, 1996, 28(4): 373 doi: 10.1016/S0920-5861(96)00050-8 [25] Topsoe N Y. Mechanism of the selective catalytic reduction of nitric oxide by ammonia elucidated by in situ on-line Fourier transform infrared spectroscopy. Science, 1994, 265(5176): 1217 doi: 10.1126/science.265.5176.1217 [26] Wang J, Wang X, Liu X L, et al. Catalytic oxidation of chlorinated benzenes over V2O5/TiO2 catalysts: The effects of chlorine substituents. Catal Today, 2015, 241: 92 doi: 10.1016/j.cattod.2014.04.002 [27] Miao J F, Yi X F, Su Q F, et al. Poisoning effects of phosphorus, potassium and lead on V2O5?WO3/TiO2 catalysts for selective catalytic reduction with NH3. Catalysts, 2020, 10(3): 345 doi: 10.3390/catal10030345 [28] Gao F Y, Tang X L, Yi H H, et al. The poisoning and regeneration effect of alkali metals deposed over commercial V2O5?WO3/TiO2 catalysts on SCR of NO by NH3. Chin Sci Bull, 2014, 59(31): 3966 doi: 10.1007/s11434-014-0496-y [29] Xu L W, Wang C Z, Chang H Z, et al. New insight into SO2 poisoning and regeneration of CeO2–WO3/TiO2 and V2O5–WO3/TiO2 catalysts for low-temperature NH3–SCR. Environ Sci Technol, 2018, 52(12): 7064 doi: 10.1021/acs.est.8b01990 [30] Madia G, Elsener M, Koebel M, et al. Thermal stability of vanadia-tungsta-titania catalysts in the SCR process. Appl Catal B Environ, 2002, 39(2): 181 doi: 10.1016/S0926-3373(02)00099-1 [31] Bond G C, Tahir S F. Vanadium oxide monolayer catalysts Preparation, characterization and catalytic activity. App Catal, 1991, 71(1): 1 doi: 10.1016/0166-9834(91)85002-D -