<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

燒結煙氣中Zn對V2O5?WO3/TiO2催化劑脫除NOx和二噁英性能的影響

丁龍 錢立新 楊濤 張洪亮 余正偉 張曉霞 龍紅明

丁龍, 錢立新, 楊濤, 張洪亮, 余正偉, 張曉霞, 龍紅明. 燒結煙氣中Zn對V2O5?WO3/TiO2催化劑脫除NOx和二噁英性能的影響[J]. 工程科學學報, 2021, 43(8): 1125-1135. doi: 10.13374/j.issn2095-9389.2020.10.08.001
引用本文: 丁龍, 錢立新, 楊濤, 張洪亮, 余正偉, 張曉霞, 龍紅明. 燒結煙氣中Zn對V2O5?WO3/TiO2催化劑脫除NOx和二噁英性能的影響[J]. 工程科學學報, 2021, 43(8): 1125-1135. doi: 10.13374/j.issn2095-9389.2020.10.08.001
DING Long, QIAN Li-xin, YANG Tao, ZHANG Hong-liang, YU Zheng-wei, ZHANG Xiao-xia, LONG Hong-ming. Influence of Zn in the iron ore sintering flue gas on the removal of NOx and dioxins by V2O5–WO3/TiO2 catalyst[J]. Chinese Journal of Engineering, 2021, 43(8): 1125-1135. doi: 10.13374/j.issn2095-9389.2020.10.08.001
Citation: DING Long, QIAN Li-xin, YANG Tao, ZHANG Hong-liang, YU Zheng-wei, ZHANG Xiao-xia, LONG Hong-ming. Influence of Zn in the iron ore sintering flue gas on the removal of NOx and dioxins by V2O5–WO3/TiO2 catalyst[J]. Chinese Journal of Engineering, 2021, 43(8): 1125-1135. doi: 10.13374/j.issn2095-9389.2020.10.08.001

燒結煙氣中Zn對V2O5?WO3/TiO2催化劑脫除NOx和二噁英性能的影響

doi: 10.13374/j.issn2095-9389.2020.10.08.001
基金項目: 國家自然科學基金資助面上項目(51674002);國家自然科學基金資助青年項目(51704009)
詳細信息
    通訊作者:

    E-mail:yaflhm@126.com

  • 中圖分類號: O643.3

Influence of Zn in the iron ore sintering flue gas on the removal of NOx and dioxins by V2O5–WO3/TiO2 catalyst

More Information
  • 摘要: V2O5?WO3/TiO2(VWTi)催化劑可以同時脫除鐵礦燒結煙氣中的NOx和二噁英,但復雜的煙氣成分會導致催化劑失活。本文采用浸漬法對VWTi 催化劑進行ZnCl2、ZnO和ZnSO4中毒實驗。模擬燒結煙氣條件,研究了在VWTi催化劑表面負載不同形態Zn對其同時脫除NOx和二噁英(以氯苯作為模擬物)性能的影響,分析了中毒前后催化劑表面活性物質的理化性質,并對中毒催化劑開展了再生實驗。結果表明:不同Zn物種對VWTi催化劑同時脫除NOx和氯苯(CB)均具有失活作用。Zn物種會引起催化劑表面顆粒輕微團聚,表面酸性位點數量減少,表面V的還原性減弱,表面化學吸附氧比例,以及V5+和V4+的物質的量比值降低。再生實驗結果表明:酸洗可以在一定程度上恢復中毒催化劑的催化活性,但水洗不能恢復中毒催化劑的活性。研究發現Zn鹽中毒作用機理為:Zn2+與催化劑表面酸性位點V=O和V?OH反應形成V?O?Zn,對NH3與CB的吸附產生不利影響,造成催化劑中毒失活,ZnSO4中的${\rm{SO}}_4^{2-} $可以為NH3和CB的吸附轉化提供新的酸性位點,減輕中毒效果,ZnCl2中的Cl?會在反應后產生副產物HCl,造成催化劑表面更多活性位點中毒,加深中毒效果。

     

  • 圖  1  催化劑活性測試設備圖

    Figure  1.  Schematic of the equipment for testing catalytic activity

    圖  2  新鮮催化劑與Zn2+中毒催化劑的脫硝活性(a)和CB降解率(b)

    Figure  2.  Denitrification (a) and chlorobenzene degradation (b) of activity of fresh and Zn2+-poisoned catalysts

    圖  3  新鮮催化劑和Zn2+中毒催化劑XRD圖譜

    Figure  3.  X-ray diffraction spectra of fresh and Zn2+-poisoned catalysts

    圖  4  新鮮催化劑和Zn2+中毒催化劑N2吸附曲線

    Figure  4.  N2 adsorption curves of fresh and Zn2+-poisoned catalysts

    圖  5  (a)Fresh catalyst,(b)ZC2,(c)ZO2 and (d)ZS2 的掃描電鏡圖譜

    Figure  5.  Scanning electron microscopy images of (a) fresh (b) ZC2, (c) ZO2, and (d) ZS2 catalysts

    圖  6  新鮮催化劑和Zn2+中毒催化劑NH3?TPD圖譜

    Figure  6.  NH3?TPD profiles of fresh and Zn2+-poisoned catalysts

    圖  7  新鮮催化劑和Zn2+中毒催化劑H2?TPR圖譜

    Figure  7.  H2?TPR profiles of fresh and Zn2+?poisoned catalysts

    圖  8  不同催化劑O1s XPS圖譜

    Figure  8.  X-ray photoelectron spectroscopy (XPS) spectra of O1s in different catalysts

    圖  9  不同催化劑V2p3/2 的XPS圖譜

    Figure  9.  XPS spectra of V2p3/2 in different catalysts

    圖  10  新鮮催化劑和Zn2+中毒催化劑拉曼光譜圖

    Figure  10.  Raman spectra of fresh and Zn2+-poisoned catalysts

    圖  11  再生催化劑脫硝(a)和CB降解活性(b)

    Figure  11.  Denitrification activity (a) and CB degradation activity (b) of the regenerated catalysts

    圖  12  WVTi催化劑 ZnO、ZnCl2 和 ZnSO4中毒機理圖

    Figure  12.  Schematic of the mechanism of poisoning of the WVTi catalyst by ZnO, ZnCl2, and ZnSO4

    表  1  新鮮催化劑和Zn2+中毒催化劑的BET表面積、孔容積和孔徑

    Table  1.   Brunauer–Emmett–Teller surface area, pore volume, and pore size of fresh and Zn2+-poisoned catalysts

    SamplesSurface area / (m2·g?1)Pore volume / (cm3·g?1)Pore size / nm
    Fresh38.250.18519.38
    ZC237.350.17919.19
    ZO237.440.18119.39
    ZS233.260.17220.45
    下載: 導出CSV

    表  2  新鮮催化劑和Zn2+中毒催化劑V XPS結果

    Table  2.   X-ray photoelectron spectroscopy results of V in fresh and Zn2+-poisoned catalysts

    V2p3/2
    FreshZC2ZO2ZS2
    Ebv/eVω/%Ebv/eVω/%Ebv/eVω/%Ebv/eVω/%
    V3+515.36.22515.48.25515.27.14515.45.88
    V4+516.531.56516.540.36516.538.09516.435.29
    V5+517.462.21517.251.37517.354.76517.158.82
    V5+/V4+1.971.271.431.67
    下載: 導出CSV

    表  3  中毒催化劑再生前后XRF結果

    Table  3.   X-ray fluorescence results of the poisoned catalysts, before and after regeneration %

    Samples
    Mass content of different elements/%
    TiSiAlWSVCaZn
    Fresh42.436.112.002.110.841.081.37
    ZC241.85.661.882.050.9691.071.351.03
    ZC2?W43.415.891.912.140.3141.081.200.78
    ZC2?A44.875.951.752.170.320.751.180.06
    ZO242.445.801.912.060.7561.081.351.27
    ZO2?W43.625.861.942.140.3051.081.220.98
    ZO2?A44.685.911.732.220.310.771.200.05
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Kong M, Liu Q C, Zhou J, et al. Effect of different potassium species on the deactivation of V2O5?WO3/TiO2 SCR catalyst: Comparison of K2SO4, KCl and K2O. Chem Eng J, 2018, 348: 637 doi: 10.1016/j.cej.2018.05.045
    [2] Xing Y, Zhang W B, Su W, et al. Research of ultra-low emission technologies of the iron and steel industry in China. Chin J Eng, 2021, 43(1): 1

    邢奕, 張文伯, 蘇偉, 等. 中國鋼鐵行業超低排放之路. 工程科學學報, 2021, 43(1):1
    [3] Yan B J, Xing Y, Lu P, et al. A critical review on the research progress of multi-pollutant collaborative control technologies of sintering flue gas in the iron and steel industry. Chin J Eng, 2018, 40(7): 767

    閆伯駿, 邢奕, 路培, 等. 鋼鐵行業燒結煙氣多污染物協同凈化技術研究進展. 工程科學學報, 2018, 40(7):767
    [4] Yu Y K, He C, Chen J S, et al. Deactivation mechanism of de-NOx catalyst (V2O5?WO3/TiO2) used in coal fired power plant. J Fuel Chem Technol, 2012, 40(11): 1359 doi: 10.1016/S1872-5813(13)60003-1
    [5] Wu S L, Zhang Y Z, Su B, et al. Analysis of main factors affecting NOx emissions in sintering process. Chin J Eng, 2017, 39(5): 693

    吳勝利, 張永忠, 蘇博, 等. 影響燒結工藝過程NOx排放質量濃度的主要因素解析. 工程科學學報, 2017, 39(5):693
    [6] Wang J, Shen B X, Liu T, et al. Deactivation and regeneration of SCR catalyst based on V2O5?TiO2. Environ Sci Technol, 2010, 33(9): 97

    王靜, 沈伯雄, 劉亭, 等. 釩鈦基SCR催化劑中毒及再生研究進展. 環境科學與技術, 2010, 33(9):97
    [7] Wang C, Li C M, Li Y J, et al. Destructive influence of cement dust on the structure and DeNOx performance of V-based SCR catalyst. Ind Eng Chem Res, 2019, 58(43): 19847 doi: 10.1021/acs.iecr.9b04268
    [8] Liu J D, Huang Z G, Li Z, et al. Ce modification on Mn/TiO2/cordierite monolithic catalyst for low-temperature NOx reduction. Chem J Chin Univ, 2014, 35(3): 589

    劉建東, 黃張根, 李哲, 等. Ce對Mn/TiO2/堇青石整體低溫脫硝選擇性催化還原催化劑的改性. 高等學校化學學報, 2014, 35(3):589
    [9] Chen L, Li J H, Ge M F. The poisoning effect of alkali metals doping over nano V2O5?WO3/TiO2 catalysts on selective catalytic reduction of NOx by NH3. Chem Eng J, 2011, 170(2-3): 531 doi: 10.1016/j.cej.2010.11.020
    [10] Li X, Li J H, Peng Y, et al. Regeneration of commercial SCR catalysts: probing the existing forms of arsenic oxide. Environ Sci Technol, 2015, 49(16): 9971 doi: 10.1021/acs.est.5b02257
    [11] Dahlin S, Nilsson M, B?ckstr?m D, et al. Multivariate analysis of the effect of biodiesel-derived contaminants on V2O5?WO3/TiO2 SCR catalysts. Appl Catal B Environ, 2016, 183: 377 doi: 10.1016/j.apcatb.2015.10.045
    [12] Guo R T, Lu C Z, Pan W G, et al. A comparative study of the poisoning effect of Zn and Pb on Ce/TiO2 catalyst for low temperature selective catalytic reduction of NO with NH3. Catal Commun, 2015, 59: 136 doi: 10.1016/j.catcom.2014.10.006
    [13] Peng Y, Wang D, Li B et al. Impacts of Pb and SO2 poisoning on CeO2?WO3/TiO2? SiO2 SCR catalyst. Environ Sci Technol, 2017, 51(20): 11943 doi: 10.1021/acs.est.7b03309
    [14] Yan L J, Wang F L, Wang P L, et al. Unraveling the unexpected offset effects of Cd and SO2 deactivation over CeO2?WO3/TiO2 catalysts for NOx reduction. Environ Sci Technol, 2020, 54(12): 7697 doi: 10.1021/acs.est.0c01749
    [15] Kong M, Liu Q C, Zhu B H, et al. Synergy of KCl and Hgel on selective catalytic reduction of NO with NH3 over V2O5? WO3/TiO2 catalysts. Chem Eng J, 2015, 264: 815 doi: 10.1016/j.cej.2014.12.038
    [16] Qian L X, Chun T J, Long H M, et al. Emission reduction research and development of PCDD/Fs in the iron ore sintering. Process Saf Environ Prot, 2018, 117: 82 doi: 10.1016/j.psep.2018.04.014
    [17] Chun T J, Zhu D Q. New process of pellets-metallized sintering process (PMSP) to treat zinc-bearing dust from iron and steel company. Metall Mater Trans B, 2015, 46(1): 1 doi: 10.1007/s11663-014-0243-4
    [18] Ji S S, Li X D, Yu M F, et al. Oxidation of PCDD/Fs over V2O5?TiO2-based catalyst. J Zhejiang Univ Eng Sci, 2014, 48(10): 1746

    紀莎莎, 李曉東, 俞明鋒, 等. V2O5?WO3/TiO2 催化劑降解氣相二惡英的研究. 浙江大學學報(工學版), 2014, 48(10):1746
    [19] Yang C C, Chang S H, Hong B Z, et al. Innovative PCDD/F-containing gas stream generating system applied in catalytic decomposition of gaseous dioxins over V2O5?WO3/TiO2-based catalysts. Chemosphere, 2008, 73(6): 890 doi: 10.1016/j.chemosphere.2008.07.027
    [20] Weng X L, Xue Y H, Chen J K, et al. Elimination of chloroaromatic congeners on a commercial V2O5?WO3/TiO2 catalyst: The effect of heavy metal Pb. J Hazard Mater, 2020, 387: 121705 doi: 10.1016/j.jhazmat.2019.121705
    [21] Sprenger D, Bach H, Meisel W, et al. XPS study of leached glass surfaces. J Non-Cryst Solids, 1990, 126(1? 2): 111
    [22] Topsoe N Y, Topsoe H, Dumesic J A. Vanadia/titania catalysts for selective catalytic reduction (SCR) of nitric-oxide by ammonia: I. combined temperature-programmed in-situ FTIR and on-line mass-spectroscopy studies. J Catal, 1995, 151(1): 226 doi: 10.1006/jcat.1995.1024
    [23] Alemany L J, Lietti L, Ferlazzo N, et al. Reactivity and physicochemical characterization of V2O5?WO3/TiO2 de-NOx catalysts. J Catal, 1995, 155(1): 117 doi: 10.1006/jcat.1995.1193
    [24] Ramis G, Yi L, Busca G. Ammonia activation over catalysts for the selective catalytic reduction of NOx and the selective catalytic oxidation of NH3. An FT-IR study. Catal Today, 1996, 28(4): 373 doi: 10.1016/S0920-5861(96)00050-8
    [25] Topsoe N Y. Mechanism of the selective catalytic reduction of nitric oxide by ammonia elucidated by in situ on-line Fourier transform infrared spectroscopy. Science, 1994, 265(5176): 1217 doi: 10.1126/science.265.5176.1217
    [26] Wang J, Wang X, Liu X L, et al. Catalytic oxidation of chlorinated benzenes over V2O5/TiO2 catalysts: The effects of chlorine substituents. Catal Today, 2015, 241: 92 doi: 10.1016/j.cattod.2014.04.002
    [27] Miao J F, Yi X F, Su Q F, et al. Poisoning effects of phosphorus, potassium and lead on V2O5?WO3/TiO2 catalysts for selective catalytic reduction with NH3. Catalysts, 2020, 10(3): 345 doi: 10.3390/catal10030345
    [28] Gao F Y, Tang X L, Yi H H, et al. The poisoning and regeneration effect of alkali metals deposed over commercial V2O5?WO3/TiO2 catalysts on SCR of NO by NH3. Chin Sci Bull, 2014, 59(31): 3966 doi: 10.1007/s11434-014-0496-y
    [29] Xu L W, Wang C Z, Chang H Z, et al. New insight into SO2 poisoning and regeneration of CeO2–WO3/TiO2 and V2O5–WO3/TiO2 catalysts for low-temperature NH3–SCR. Environ Sci Technol, 2018, 52(12): 7064 doi: 10.1021/acs.est.8b01990
    [30] Madia G, Elsener M, Koebel M, et al. Thermal stability of vanadia-tungsta-titania catalysts in the SCR process. Appl Catal B Environ, 2002, 39(2): 181 doi: 10.1016/S0926-3373(02)00099-1
    [31] Bond G C, Tahir S F. Vanadium oxide monolayer catalysts Preparation, characterization and catalytic activity. App Catal, 1991, 71(1): 1 doi: 10.1016/0166-9834(91)85002-D
  • 加載中
圖(12) / 表(3)
計量
  • 文章訪問數:  1358
  • HTML全文瀏覽量:  617
  • PDF下載量:  71
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-10-08
  • 網絡出版日期:  2020-11-26
  • 刊出日期:  2021-08-25

目錄

    /

    返回文章
    返回