[1] |
Li J F, Wei Z Y, Lu B H. Research progress on technology of selective laser melting of titanium and titanium alloys. Laser Optoelectron Prog, 2018, 55(1): 21李俊峰, 魏正英, 盧秉恒. 鈦及鈦合金激光選區熔化技術的研究進展. 激光與光電子學進展, 2018, 55(1):21
|
[2] |
Ge Y N, Wu M P, Mao Y Y, et al. Effect of scanning strategy on forming precision of titanium alloy by selective laser melting. Laser Optoelectron Prog, 2018, 55(9): 262葛亞楠, 武美萍, 冒浴沂, 等. 激光選區熔化掃描策略對鈦合金成形精度的影響. 激光與光電子學進展, 2018, 55(9):262
|
[3] |
Zhang H. Research on the Solidification Microstructure Evolution of TC4 Alloy Fabricated by Selective Laser Melting [Dissertation]. Harbin: Harbin Institute of Technology, 2017張慧. 選區激光熔化TC4 合金的凝固組織演化規律研究[學位論文]. 哈爾濱: 哈爾濱工業大學, 2017
|
[4] |
Yadroitsev I, Smurov I. Selective laser melting technology: From the single laser melted track stability to 3D parts of complex shape. Phys Procedia, 2010, 5: 551 doi: 10.1016/j.phpro.2010.08.083
|
[5] |
Zhang L C, Attar H. Selective laser melting of titanium alloys and titanium matrix composites for biomedical applications: a review. Adv Eng Mater, 2016, 18(4): 463 doi: 10.1002/adem.201500419
|
[6] |
Shi Q M, Gu D D, Xia M J, et al. Effects of laser processing parameters on thermal behavior and melting/solidification mechanism during selective laser melting of TiC/Inconel 718 composites. Opt Laser Technol, 2016, 84: 9 doi: 10.1016/j.optlastec.2016.04.009
|
[7] |
Yadroitsev I, Krakhmalev P, Yadroitsava I. Selective laser melting of Ti6Al4V alloy for biomedical applications: temperature monitoring and microstructural evolution. J Alloys Compd, 2014, 583: 404 doi: 10.1016/j.jallcom.2013.08.183
|
[8] |
Xie Y K. Numerical Investigation on Temperature Field and Flow Field During Selective Laser Melting of Ti−6Al−4V [Dissertation]. Beijing: Beijing University of Technology, 2018謝印開. 激光選區熔化Ti–6Al–4V 溫度場與流場的數值模擬[學位論文]. 北京: 北京工業大學, 2018
|
[9] |
Dai N W, Zhang L C, Zhang J X, et al. Distinction in corrosion resistance of selective laser melted Ti?6Al?4V alloy on different planes. Corros Sci, 2016, 111: 703 doi: 10.1016/j.corsci.2016.06.009
|
[10] |
Dai N W, Zhang L C, Zhang J X, et al. Corrosion behavior of selective laser melted Ti?6Al?4V alloy in NaCl solution. Corros Sci, 2016, 102: 484 doi: 10.1016/j.corsci.2015.10.041
|
[11] |
Chen L Y, Huang J C, Lin C H, et al. Anisotropic response of Ti?6Al?4V alloy fabricated by 3D printing selective laser melting. Mater Sci Eng A, 2017, 682: 389 doi: 10.1016/j.msea.2016.11.061
|
[12] |
Simonelli M. Microstructure Evolution and Mechanical Properties of Selective Laser Melted Ti−6Al−4V [Dissertation]. Leicestershire: Loughborough University, 2014
|
[13] |
Wang Z B, Hu H X, Zheng Y G, et al. Comparison of the corrosion behavior of pure titanium and its alloys in fluoride-containing sulfuric acid. Corros Sci, 2016, 103: 50 doi: 10.1016/j.corsci.2015.11.003
|
[14] |
Cao C N. Principles of Electrochemistry of Corrosion. 3rd Ed. Beijing: Chemical Industry Press, 2008曹楚南. 腐蝕電化學原理. 3版. 北京: 化學工業出版社, 2008
|
[15] |
Mansfeld F. Tafel slopes and corrosion rates obtained in the pre-Tafel region of polarization curves. Corros Sci, 2005, 47(12): 3178 doi: 10.1016/j.corsci.2005.04.012
|
[16] |
Man C, Dong C F, Liu T T, et al. The enhancement of microstructure on the passive and pitting behaviors of selective laser melting 316L SS in simulated body fluid. Appl Surf Sci, 2019, 467-468: 193 doi: 10.1016/j.apsusc.2018.10.150
|
[17] |
Wang Z B, Hu H X, Liu C B, et al. The effect of fluoride ions on the corrosion behavior of pure titanium in 0.05 M sulfuric acid. Electrochim Acta, 2014, 135: 526
|
[18] |
Arrabal R, Matykina E, Viejo F, et al. Corrosion resistance of WE43 and AZ91D magnesium alloys with phosphate PEO coatings. Corros Sci, 2008, 50(6): 1744 doi: 10.1016/j.corsci.2008.03.002
|
[19] |
Wang B L, Zheng Y F, Zhao L C. Effects of Hf content and immersion time on electrochemical behavior of biomedical Ti-22Nb-xHf alloys in 0.9% NaCl solution. Mater Corros, 2009, 60(5): 330
|
[20] |
Cui Z Y, Wang L W, Zhong M Y, et al. Electrochemical behavior and surface characteristics of pure titanium during corrosion in simulated desulfurized flue gas condensates. J Electrochem Soc, 2018, 165(9): C542 doi: 10.1149/2.1321809jes
|
[21] |
Zhang H W, Man C, Wang L W, et al. Different corrosion behaviors between α and β phases of Ti6Al4V in fluoride-containing solutions: influence of alloying element Al. Corros Sci, 2020, 169: 108605 doi: 10.1016/j.corsci.2020.108605
|
[22] |
Abbas G, Liu Z, Skeldon P. Corrosion behaviour of laser-melted magnesium alloys. Appl Surf Sci, 2005, 247(1-4): 347 doi: 10.1016/j.apsusc.2005.01.169
|
[23] |
Stancheva M, Bojinov M. Influence of fluoride content on the barrier layer formation and titanium dissolution in ethylene glycol–water electrolytes. Electrochim Acta, 2012, 78: 65 doi: 10.1016/j.electacta.2012.05.093
|
[24] |
Nakagawa M, Matsuya S, Shiraishi T, et al. Effect of fluoride concentration and pH on corrosion behavior of titanium for dental use. J Dent Res, 1999, 78(9): 1568 doi: 10.1177/00220345990780091201
|
[25] |
Guo P F, Lin X, Li J Q, et al. Electrochemical behavior of Inconel 718 fabricated by laser solid forming on different sections. Corros Sci, 2018, 132: 79 doi: 10.1016/j.corsci.2017.12.021
|