<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

巴西圓盤劈裂二維及三維數值模擬研究

喬蘭 劉建 李慶文 趙國彥

喬蘭, 劉建, 李慶文, 趙國彥. 巴西圓盤劈裂二維及三維數值模擬研究[J]. 工程科學學報, 2022, 44(1): 131-142. doi: 10.13374/j.issn2095-9389.2020.09.28.006
引用本文: 喬蘭, 劉建, 李慶文, 趙國彥. 巴西圓盤劈裂二維及三維數值模擬研究[J]. 工程科學學報, 2022, 44(1): 131-142. doi: 10.13374/j.issn2095-9389.2020.09.28.006
QIAO Lan, LIU Jian, LI Qing-wen, ZHAO Guo-yan. Numerical study of the Brazilian tensile test: 2D and 3D simulations[J]. Chinese Journal of Engineering, 2022, 44(1): 131-142. doi: 10.13374/j.issn2095-9389.2020.09.28.006
Citation: QIAO Lan, LIU Jian, LI Qing-wen, ZHAO Guo-yan. Numerical study of the Brazilian tensile test: 2D and 3D simulations[J]. Chinese Journal of Engineering, 2022, 44(1): 131-142. doi: 10.13374/j.issn2095-9389.2020.09.28.006

巴西圓盤劈裂二維及三維數值模擬研究

doi: 10.13374/j.issn2095-9389.2020.09.28.006
基金項目: 國家自然科學基金委與山東聯合基金重點資助項目(U1806209);北京科技大學青年教師學科交叉研究資助項目(FRF-IDRY-19-002);中央高校基本科研業務費專項資金資助項目(FRF-TP-19-021A3)
詳細信息
    通訊作者:

    E-mail: qingwenli@ustb.edu.cn

  • 中圖分類號: TU452

Numerical study of the Brazilian tensile test: 2D and 3D simulations

More Information
  • 摘要: 為揭示巴西圓盤起裂模式的變化規律及其破裂演化過程,運用連續介質彈塑性分析開展巴西圓盤劈裂二維及三維數值模擬研究。通過開展二維模擬研究,探究壓拉比及加載角對試樣起裂破壞模式的影響;通過三維模擬研究,探究圓盤試樣三維破裂面的形成及擴展過程。二維數值模擬結果表明,接觸加載角及壓拉比越大,巴西圓盤試樣越容易發生中心起裂;端部起裂由剪切破壞引起,而劈裂裂紋進一步擴展則由張拉破壞驅動。三維數值模擬結果表明,初始起裂點位于三維圓盤端面,隨加載角增大其逐漸向端面圓心移動;當圓盤發生端面中心起裂時,三維破裂面以弧形邊界向試樣內部發散擴展。無論圓盤試樣發生中心起裂還是端部起裂,由于三維效應巴西劈裂試驗可能都會低估巖石的抗拉強度。

     

  • 圖  1  巴西圓盤弧形均布載荷加載示意圖

    Figure  1.  A disk subjected to diametrically distributed loads in the Brazilian test

    圖  2  二維巴西劈裂加載示意圖

    Figure  2.  Loading setup of the 2D numerical Brazilian test

    圖  3  不同壓拉比時巴西圓盤試樣的破壞過程。 (a)均勻試樣λ=20;(b) 均勻試樣λ=10;(c)非均勻試樣λ=20;(d)非均勻試樣λ=10;(e)非均勻試樣λ=8

    Figure  3.  Failure processes of the numerical disks with different compression–tension ratios (λ) under the loading angle of 9.18°: (a) homogeneous disk λ = 20; (b) homogeneous disk λ = 10; (c) heterogeneous disk λ = 20; (d) heterogeneous disk λ = 10; (e) heterogeneous disk λ = 8

    圖  4  三維巴西圓盤模型網格示意圖

    Figure  4.  Grid model of the 3D numerical Brazilian disk

    圖  5  不同加載角時巴西圓盤試樣三維破裂面的起裂及擴展過程。 (a)2α=29.7°;(b)2α=25.7°;(c)2α=14.4°;(d)2α=4.4°

    Figure  5.  Fracture initiation and propagation processes of the 3D Brazilian disks with different contact loading angles: (a) 2α = 29.7°; (b) 2α = 25.7°; (c) 2α = 14.4°; (d) 2α = 4.4°

    圖  6  不同加載角時二維巴西圓盤受壓直徑上應力分布的數值模擬結果與理論計算結果對比示意圖。 (a) 2α=4.58°;(b)2α=6.88°;(c)2α=9.18°;(d)2α=11.48°;(e)2α=13.78°;(f)2α=16.10°

    Figure  6.  Comparison of normalized stresses along the compressed diameter between the numerical results and Hondros’ solutions with different contact loading angles: (a) 2α = 4.58°; (b) 2α = 6.88°; (c) 2α = 9.18°; (d) 2α = 11.48°; (e) 2α = 13.78°; (f) 2α = 16.10°

    圖  7  不同加載角下三維巴西圓盤受壓直徑上應力分布的數值模擬結果與理論計算結果對比示意圖。(a)2α=4.4°;(b)2α=14.4°;(c)2α=25.7°;(d)2α=29.7°

    Figure  7.  Comparison of normalized stresses along the compressed diameter between the numerical results and Hondros’ solutions with different contact loading angles: (a) 2α = 4.4°; (b) 2α = 14.4°; (c) 2α = 25.7°; (d) 2α = 29.7°

    圖  8  不同加載角下三維巴西圓盤試樣中心剖面及端面受壓直徑上切向應力分布示意圖。(a)中心剖面(Y=0.0125)切向應力;(b)端面(Y=0.025)切向應力

    Figure  8.  Normalized tangential stresses along the compressed diameter of the surface and middle section of 3D disks with different contact loading angles: (a) middle section (Y=0.0125); (b) surface (Y=0.025)

    圖  9  不同加載角時三維巴西圓盤試樣軸向受壓平面上(X=0)切向應力分布云圖。(a)2α=29.7°;(b)2α=25.7°;(c)2α=14.4°;(d)2α=7.6°;(e)2α=4.4°

    Figure  9.  Contour plots of normalized tangential stresses (σxx) on the compressed middle section plane (X = 0) of the 3D disks with different contact loading angles: (a) 2α = 29.7°; (b) 2α = 25.7°; (c) 2α = 14.4°; (d) 2α = 7.6°; (e) 2α = 4.4°

    圖  10  不同泊松比時最大切向拉應力點及最大切向拉應變點位置隨接觸加載角的變化情況。(a)最大切向拉應力點;(b)最大切向拉應變點

    Figure  10.  Change in the position of the maximum tangential tensile stress point and strain point with the contact loading angles under different Poisson’s ratios: (a) the maximum tangential tensile stress point; (b) the maximum tangential tensile strain point

    圖  11  最大Griffith等效拉應力位置隨加載角度的變化情況

    Figure  11.  Change in the position of the maximum Griffith equivalent tensile stresses with the contact loading angles

    表  1  數值模型參數

    Table  1.   Material properties of the numerical model

    Elastic modulus/
    GPa
    Poisson’s ratioCompressive strength/
    MPa
    Tensile strength/
    MPa
    Cohesion/
    MPa
    600.25200838.39
    Friction angle/
    (°)
    Residue cohesion/
    MPa
    Residue tensile strength/
    MPa
    Plastic shear strain limitPlastic tension strain limit
    481.920.45 × 10?42 × 10?4
    下載: 導出CSV

    表  2  不同壓拉比及加載角巴西試樣的破壞模式

    Table  2.   Failure modes of the numerical Brazilian disks with different compression?tension ratios (λ) and contact loading angles (2α)

    λFailure modes
    2α = 16.10°2α = 13.78°2α = 11.48°2α = 9.18°2α = 6.88°2α = 4.58°
    20
    18
    16
    14
    12
    10
    下載: 導出CSV

    表  3  不同加載角及壓拉比下二維巴西圓盤試樣抗拉強度計算結果

    Table  3.   Calculated tensile strength of 2D numerical Brazilian disks with different contact loading angles and compression–tension ratios

    λReal strength/MPaCalculated tensile strength/MPa
    2α = 16.10°2α = 13.78°2α = 11.48°2α = 9.18°2α = 6.88°2α = 4.58°
    2010.010.3 (2.6%)10.2 (2.2%)10.2 (1.7%)10.1 (1.4%)10.1 (1.2%)8.7 (13.3%)
    1811.111.4 (2.5%)11.3 (2.0%)11.3 (1.6%)11.3 (1.3%)10.7 (3.3%)8.6 (22.6%)
    1612.512.8 (2.5%)12.7 (1.9%)12.7 (1.5%)12.1 (3.4%)11.3 (9.7%)8.7 (30.8%)
    1414.314.6 (2.2%)14.5 (1.6%)14.5 (1.2%)11.9 (16.7%)11.6 (19.0%)8.7 (39.5%)
    1216.716.8 (1.0%)16.3 (2.5%)14.7 (12.1%)11.7 (29.9%)10.7 (35.6%)8.6 (48.3%)
    1020.017.0 (14.8%)16.6 (17.0%)14.6 (26.8%)12.9 (35.7%)10.7 (46.7%)8.6 (56.9%)
    Note: The data in parentheses are relative errors.
    下載: 導出CSV

    表  4  不同加載角下三維巴西圓盤試樣抗拉強度計算結果

    Table  4.   Calculated tensile strength of the 3D numerical Brazilian disks with different loading angles

    Loading angles/
    (°)
    Peak loads/
    N
    Tensile strength/
    MPa
    Relative error/
    %
    Distance/
    mm
    Failure modes
    4.454272.7665.525Crack initiation at loading point
    7.683294.2247.320.5Crack initiation off central point
    10.9101005.0836.518.5Crack initiation off central point
    14.4117845.8826.517.5Crack initiation off central point
    17.9132376.5218.514.5Crack initiation off central point
    21.7141326.8614.312.5Crack initiation off central point
    25.7149257.1011.38.5Crack initiation off central point
    29.7154417.1710.40Crack initiation at central point
    33.7158687.1610.40Crack initiation at central point
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Healy D, Jones R R, Holdsworth R E. Three-dimensional brittle shear fracturing by tensile crack interaction. Nature, 2006, 439(7072): 64 doi: 10.1038/nature04346
    [2] Reches Z, Lockner D A. Nucleation and growth of faults in brittle rocks. J Geophys Res Solid Earth, 1994, 99(B9): 18159 doi: 10.1029/94JB00115
    [3] Hoek E, Martin C D. Fracture initiation and propagation in intact rock—a review. J Rock Mech Geotech Eng, 2014, 6(4): 287 doi: 10.1016/j.jrmge.2014.06.001
    [4] International Society for Rock Mechanics. Suggested methods for determining tensile strength of rock materials. Int J Rock Mech Min Sci Geomech Abstr, 1978, 15(3): 99 doi: 10.1016/0148-9062(78)90003-7
    [5] Fairhurst C. On the validity of the ‘Brazilian’ test for brittle material. Int J Rock Mech Min Sci Geomech Abstracts, 1964, 1(4): 535 doi: 10.1016/0148-9062(64)90060-9
    [6] Yu Y. Questioning the validity of the Brazilian test for determining tensile strength of rocks. Chin J Rock Mech Eng, 2005, 24(7): 1150 doi: 10.3321/j.issn:1000-6915.2005.07.011

    喻勇. 質疑巖石巴西圓盤拉伸強度試驗. 巖石力學與工程學報, 2005, 24(7):1150 doi: 10.3321/j.issn:1000-6915.2005.07.011
    [7] Li D Y, Wong L N Y. The Brazilian disc test for rock mechanics applications: review and new insights. Rock Mech Rock Eng, 2013, 46(2): 269 doi: 10.1007/s00603-012-0257-7
    [8] Erarslan N, Williams D J. Experimental, numerical and analytical studies on tensile strength of rocks. Int J Rock Mech Min Sci, 2012, 49: 21 doi: 10.1016/j.ijrmms.2011.11.007
    [9] Erarslan N, Liang Z Z, Williams D J. Experimental and numerical studies on determination of indirect tensile strength of rocks. Rock Mech Rock Eng, 2012, 45(5): 739
    [10] Komurlu E, Kesimal A, Demir S. Experimental and numerical study on determination of indirect (splitting) tensile strength of rocks under various load apparatus. Can Geotech J, 2016, 53(2): 360 doi: 10.1139/cgj-2014-0356
    [11] Komurlu E, Kesimal A. Evaluation of indirect tensile strength of rocks using different types of jaws. Rock Mech Rock Eng, 2015, 48(4): 1723 doi: 10.1007/s00603-014-0644-3
    [12] Jaeger J C, Hoskins E R. Rock failure under the confined Brazilian test. J Geophys Res, 1966, 71(10): 2651 doi: 10.1029/JZ071i010p02651
    [13] García V J, Márquez C M, Zú?iga-Suárez A R, et al. Brazilian test of concrete specimens subjected to different loading geometries: review and new insights. Int J Concr Struct Mater, 2017, 11(2): 343 doi: 10.1007/s40069-017-0194-7
    [14] Gutiérrez-Moizant R, Ramírez-Berasategui M, Santos-Cuadros S, et al. Computational verification of the optimum boundary condition of the Brazilian tensile test. Rock Mech Rock Eng, 2018, 51(11): 3505 doi: 10.1007/s00603-018-1553-7
    [15] Bahaaddini M, Serati M, Masoumi H, et al. Numerical assessment of rupture mechanisms in Brazilian test of brittle materials. Int J Solids Struct, 2019, 180-181: 1 doi: 10.1016/j.ijsolstr.2019.07.004
    [16] Han Y F, Wang Z H, Tang Y S. Mechanical behavior of different rocks in the splitting test. J China Univ Min Technol, 2020, 49(5): 863

    韓宇峰, 王兆會, 唐岳松. 劈裂實驗中不同巖石力學行為特征. 中國礦業大學學報, 2020, 49(5):863
    [17] Aliabadian Z, Zhao G F, Russell A R. Crack development in transversely isotropic sandstone discs subjected to Brazilian tests observed using digital image correlation. Int J Rock Mech Min Sci, 2019, 119: 211 doi: 10.1016/j.ijrmms.2019.04.004
    [18] Deng H F, Li J L, Zhu M, et al. Research on effect of disc thickness-to-diameter ratio on splitting tensile strength of rock. Chin J Rock Mech Eng, 2012, 31(4): 792

    鄧華鋒, 李建林, 朱敏, 等. 圓盤厚徑比對巖石劈裂抗拉強度影響的試驗研究. 巖石力學與工程學報, 2012, 31(4):792
    [19] Xu X L. Research on the Experiment and Meso-simulation of Tensile Characteristics and Its Fracture Mechanism of Brittle Rock [Dissertation]. Beijing: University of Science and Technology Beijing, 2017

    許學良. 脆性巖石抗拉特性及其破裂機制的試驗與細觀研究[學位論文]. 北京: 北京科技大學, 2017
    [20] Hondros J R. The evaluation of poisson's ratio and the modulus of materials of a low tensile resistance by the Brazilian (indirect tension) test with particular reference to concrete. Aust J Appl Sci, 1959, 10: 243
    [21] Li D Y. Study on the Spalling Failure of Hard Rock and the Mechanism of Strainburst under High in-situ Stresses [Dissertation]. Changsha: Central South University, 2010

    李地元. 高應力硬巖脆性板裂破壞和應變型巖爆機理研究[學位論文]. 長沙: 中南大學, 2010
    [22] Chen S, Yue Z Q, Tan G H. Digital image based numerical modeling method for heterogeneous geomaterials. Chin J Geotech Eng, 2005, 27(8): 956 doi: 10.3321/j.issn:1000-4548.2005.08.020

    陳沙, 岳中琦, 譚國煥. 基于數字圖像的非均質巖土工程材料的數值分析方法. 巖土工程學報, 2005, 27(8):956 doi: 10.3321/j.issn:1000-4548.2005.08.020
    [23] Liu J, Zhao G Y, Liang W Z, et al. Numerical simulation of uniaxial compressive strength and failure characteristics in nonuniform rock materials. Rock Soil Mech, 2018, 39(Suppl 1): 505

    劉建, 趙國彥, 梁偉章, 等. 非均勻巖石介質單軸壓縮強度及變形破裂規律的數值模擬. 巖土力學, 2018, 39(增刊1): 505
    [24] Liang Z Z, Tang C A, Zhang Y B, et al. On probability model of physico-mechanical parameters of quasi-brittle materials and associated mechanical failure behaviors. Chin J Rock Mech Eng, 2008, 27(4): 718 doi: 10.3321/j.issn:1000-6915.2008.04.010

    梁正召, 唐春安, 張永彬, 等. 準脆性材料的物理力學參數隨機概率模型及破壞力學行為特征. 巖石力學與工程學報, 2008, 27(4):718 doi: 10.3321/j.issn:1000-6915.2008.04.010
    [25] Jiang Q, Cui J, Feng X T, et al. Stochastic statistics and probability distribution estimation of mechanical parameters of basalt. Rock Soil Mech, 2017, 38(3): 784

    江權, 崔潔, 馮夏庭, 等. 玄武巖力學參數的隨機性統計與概率分布估計. 巖土力學, 2017, 38(3):784
    [26] Yang Z P, He B, Xie L Z, et al. Strength and failure modes of shale based on Brazilian test. Rock Soil Mech, 2015, 36(12): 3447

    楊志鵬, 何柏, 謝凌志, 等. 基于巴西劈裂試驗的頁巖強度與破壞模式研究. 巖土力學, 2015, 36(12):3447
    [27] Stacey T R. A simple extension strain criterion for fracture of brittle rock. Int J Rock Mech Min Sci Geomech Abstracts, 1981, 18(6): 469 doi: 10.1016/0148-9062(81)90511-8
  • 加載中
圖(11) / 表(4)
計量
  • 文章訪問數:  1869
  • HTML全文瀏覽量:  753
  • PDF下載量:  139
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-09-28
  • 網絡出版日期:  2020-12-04
  • 刊出日期:  2022-01-01

目錄

    /

    返回文章
    返回