<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

抗生素菌渣水熱催化產油及其特性

鄭子軒 洪晨 李再興 邢奕 李益飛 楊健 秦巖 趙秀梅

鄭子軒, 洪晨, 李再興, 邢奕, 李益飛, 楊健, 秦巖, 趙秀梅. 抗生素菌渣水熱催化產油及其特性[J]. 工程科學學報, 2022, 44(1): 152-162. doi: 10.13374/j.issn2095-9389.2020.09.17.003
引用本文: 鄭子軒, 洪晨, 李再興, 邢奕, 李益飛, 楊健, 秦巖, 趙秀梅. 抗生素菌渣水熱催化產油及其特性[J]. 工程科學學報, 2022, 44(1): 152-162. doi: 10.13374/j.issn2095-9389.2020.09.17.003
ZHENG Zi-xuan, HONG Chen, LI Zai-xing, XING Yi, LI Yi-fei, YANG Jian, QIN Yan, ZHAO Xiu-mei. Preparation and properties of bio-oil from the antibiotic residue by hydrothermal liquefaction[J]. Chinese Journal of Engineering, 2022, 44(1): 152-162. doi: 10.13374/j.issn2095-9389.2020.09.17.003
Citation: ZHENG Zi-xuan, HONG Chen, LI Zai-xing, XING Yi, LI Yi-fei, YANG Jian, QIN Yan, ZHAO Xiu-mei. Preparation and properties of bio-oil from the antibiotic residue by hydrothermal liquefaction[J]. Chinese Journal of Engineering, 2022, 44(1): 152-162. doi: 10.13374/j.issn2095-9389.2020.09.17.003

抗生素菌渣水熱催化產油及其特性

doi: 10.13374/j.issn2095-9389.2020.09.17.003
基金項目: 中央高校基本科研業務費資助項目(FRF-TP-20-010A2)
詳細信息
    通訊作者:

    洪晨,E-mail: hongchen000@126.com

    邢奕,E-mail: xingyi@ustb.edu.cn

  • 中圖分類號: X799.5

Preparation and properties of bio-oil from the antibiotic residue by hydrothermal liquefaction

More Information
  • 摘要: 探究了菌渣的水熱液化轉換成生物油燃料的過程。結果表明,抗生素菌渣在260 ℃、保留時間是135 min時,獲得最大的生物油產率(28.01%)。通過6種不同的催化劑進行催化,加入催化劑后,生物油產率最大的是Na2CO3(36.06%)和NaOH(36.31%)。堿催化的生物油的含氮化合物的質量分數在41.16%~49.74%之間,而酸催化產生的生物油含氮化合物的量在57.62%~59.32%之間。通過調節催化劑Na2CO3、NaOH的添加量發現,在投加量為8%時,生物油含氮量均最低,Na2CO3和NaOH催化產生的生物油組分的含氮化合物質量分數分別為29.12%和35.67%。在催化劑投加量為10%時,對氧的脫除效果都最好,分別為32.12%和29.02%,此時產生的生物油的熱值達到最大(達到33.3220和34.7320 MJ?kg?1)。

     

  • 圖  1  水熱反應產物收集路線圖

    Figure  1.  Collection route of hydrothermal reaction products

    圖  2  不同產物產率隨反應溫度的變化。(a)生物油產率;(b)固體殘渣產率;(c)水相產物產率;(d)生物氣產率

    Figure  2.  Yield change of different products with temperature: (a) yield of bio-oil ; (b) yield of solid residue; (c) yield of aqueous products; (d) yield of biogas

    圖  3  產物產率隨停留時間的變化。(a)生物油產率;(b)固體殘渣產率;(c)水相產物產率;(d)生物氣產率

    Figure  3.  Change of product yield with residence time: (a) yield of bio-oil; (b) yield of solid residue; (c) yield of aqueous products; (d) yield of biogas

    表  1  抗生素菌渣元素、工業分析(質量分數)

    Table  1.   Elemental and industrial analysis of antibiotic residue %

    Industrial analysis Elemental analysis
    Volatile matterFixed carbonAshWater CHNSO*
    75.268.517.328.91 47.386.626.260.8136.02
    Note: * is obtained by difference calculation method.
    下載: 導出CSV

    表  2  不同均相催化劑生物油產率對比

    Table  2.   Comparison of the bio-oil yield of different homogeneous catalysts %

    CatalystBio-oil production rateSolid production rateLiquid production rateGas production rate
    None28.0126.3818.8327.08
    HCOOH24.3127.8618.9326.90
    CH3COOH23.3128.0421.2227.43
    Na2CO336.0621.5222.1920.23
    NaOH36.3125.4822.4523.16
    K2CO329.0524.8922.3224.14
    KOH29.0124.9122.1223.96
    下載: 導出CSV

    表  3  不同催化劑催化生物油氣相色譜?質譜分析

    Table  3.   GC/MS analysis of bio-oil catalyzed by different catalysts

    No.Retention time/minCompositionPeak area/%
    NoneHCOOHCH3COOHNa2CO3K2CO3NaOHKOH
    12.5132-methoxy-1-3-phenylmethoxy-benzene1.272.803.21
    22.748glycine1.1212.1812.79
    33.522,2-dimethoxybutane1.192.395.19
    44.2362,4-azacyclobutanedione2.979.356.7126.791.8214.36
    55.213Trione trioxide7.726.323.125.610.59
    69.242Carbamate5.674.163.052.731.662.56
    715.707Tri butyl acrylonitrile7.123.182.194.071.73
    817.166Dihydromannitol9.123.172.46
    918.3014-ethyl-phenol2.191.50
    1020.0721-isocyano-2-methyl-benzene1.213.374.552.152.281.65
    1123.0965-methyl-indole6.193.375.729.765.022.351.53
    1224.211,2,3-triazole-4-amino-formamide2.123.046.12
    1325.5991,4-anhydrous-mannitol3.84%
    1426.0782-acrylic acid-3-methylamino-methyl ester2.192.062.22
    1528.349Syringol1.864.38
    1630.191l-tryptophan-dinitrophenyl4.312.96
    1735.8512,5-dione-3,6-diisopropylpiperazin2.123.546.014.441.72
    1838.2031,4-dione hexahydro-3-pyrrolo3.322.87
    1939.1061-methyl-pyrido19.325.113.7916.206.659.215.23
    2040.7182,5-piperazinodione 3,6-bismethylpropyl9.321.212.109.275.373.466.31
    2142.2916-methyl-octadecane8.7511.49
    2242.9669,12-hexadecaneate ethyl2.1212.019.4820.98
    2344.0069,12-octadecadiene ester1.279.327.313.699.362.321.39
    2444.094Actinomycin0.790.970.760.910.360.290.67
    2544.2391-heptyne-1-alcohol1.3612.56
    2644.762Cyclopentanone21.1919.0419.5611.8815.8716.5411.78
    2745.7979,12-octadecadienoic acid1.215.607.2111.51
    2846.322Ethyl linoleate2.121.278.95
    2946.871Lauramide7.88
    3048.412l-phenyl-cyclo0.014.971.29
    3148.763Methyl-1-octadecylamine0.195.07
    3249.486l-phenylalanyl-cyclo0.645.32
    3350.5736,9-pentadecadiene-alcohol9.989.2911.7816.063.519.23
    下載: 導出CSV

    表  4  不同催化劑催化產生生物油元素分析(質量分數)

    Table  4.   Analysis of bio-oil elements produced by different catalysts %

    CatalystCHNSOHigh heating value/
    (MJ?kg ?1
    None65.198.069.191.0612.9630.1230
    HCOOH72.2128.688.711.4710.1231.0229
    CH3COOH72.1038.618.671.4010.3231.0010
    Na2CO374.168.776.881.189.0133.3210
    NaOH73.148.736.971.249.2734.7390
    K2CO373.198.747.011.229.9732.2920
    KOH73.128.767.061.369.9132.1980
    下載: 導出CSV

    表  5  Na2CO3不同梯度生物油成分分析(質量分數)

    Table  5.   Composition analysis of bio-oil with different gradients of Na2CO3

    No.Retention time/minCompositionPeak area/%
    0%1%3%5%8%10%
    13.5172,2-dimethoxybutane21.854.13
    25.224Trione trioxide7.725.61
    39.235Methyl carbamate butyl ester1.191.702.391.984.193.05
    412.481Methyl carbamate1.972.412.04
    515.69Tri butyl acrylonitrile7.121.875.864.07
    617.189Dihydromannitol4.123.17
    718.34-ethyl-Phenol1.120.982.81
    820.0671-isocyano-2-methyl-Benzene4.731.952.444.55
    923.15-methyl-indole1.192.284.593.714.73
    1025.477alanine7.123.00
    1126.0812-acrylic acid,3dimethyl-ester3.124.821.46
    1226.0991-ethyl-indole6.275.03
    1328.355Syringol9.204.90
    1435.8532,5-dione,3,6-diisopropylpiperazin2.122.793.167.32
    1539.1121-methyl-9- pyrido-indole19.718.925.4112.307.1616.20
    1640.7043,6methyl propyl piperazinodione9.324.143.0416.66
    1742.458Ethyl hexadecanoate10.18
    1844.043Deoxyspermidine guanidin4.85
    1944.094Actinomycin0.67
    2044.753Cyclopentanone21.1913.289.1514.8528.6911.88
    2145.7339,12-octadecadienoic acid7.2118.82
    2248.6382-amino-5carboxyl-imidazole2.128.297.55
    2348.7261-methyl-octadecylamine0.7217.32
    2449.783Pyrrolo pyrazine3.2714.10
    2550.576,9-pentadecadiene-1-alcohol0.0215.0712.9123.4611.78
    下載: 導出CSV

    表  6  NaOH不同梯度生物油成分分析 (質量分數)

    Table  6.   Composition analysis of bio-oil with different gradients of NaOH

    No.Retention time /minCompositionPeak area/%
    0%1%3%5%8%10%
    13.5212,2-dimethoxybutane1.197.22
    24.2453-diethyl-2,4-azacyclobutanedione0.371.82
    35.229Trione trioxide7.720.550.59
    49.238butyl methyl phenyl ester1.971.752.861.892.011.66
    59.8432-phenylpentan-3-isopropyl-alcohol1.22
    612.484Methyl carbamate1.972.23
    715.693Tri butyl acrylonitrile7.122.915.172.952.031.73
    816.689Amino propanol2.50
    917.169Dihydromannitol2.121.922.46
    1017.6651,6-dicarboxylic acid-pyrido imidazole0.76
    1118.2964-ethyl-Phenol1.201.933.122.211.50
    1220.0661-isocyano-2-methyl-benzene1.126.082.28
    1323.1055-methyl-indole6.192.753.609.091.262.35
    1425.472alanine7.125.91
    1525.5991,4-anhydrous-mannitol3.123.84
    1626.0762-acrylic acid,3-methylamino-ester3.244.68
    1727.035isopropyl-3-phenylpropanamide1.282.281.291.32
    1828.355Syringol7.210.932.914.38
    1929.2662,7-dimethyl-indolizine2.18
    2030.191N-dinitrophenyl-l-tryptophan2.96
    2132.6826-ethyl-2,3-dimethyl pyridine3.99
    2232.692triazine-3-keone2.37
    2338.2031,4-dionePyrrolo pyrazine2.87
    2438.292,5-dione,3,6-diisopropyl piperazin2.125.453.275.423.761.72
    2539.0891-methyl-indole19.719.226.827.107.939.21
    2640.7112,5-piperazinodione, 3,6-bis (2-methylpropyl-9.329.614.883.523.46
    2741.7191-methyl-indole5.10
    2842.2916-methyl-octadecane11.49
    2944.006Deoxyspermidine guanidin10.984.72
    3044.2391-heptyne-alcohol12.56
    3144.791Cyclopentanone, oxime6.0613.2911.7713.0821.7616.54
    3245.7249,12-octadecadienoic acid13.08
    3345.755linoleic acid7.219.40
    3445.7581-alcohol-tetradece0.8714.18
    3548.6792-amino-imidazole2.125.759.46
    3648.7311-octadecylamine0.7212.53
    3749.495Cyclo-(1-leucyl-l-phenylalanyl)11.2120.985.01
    3850.5811-alcohol-pentadecadiene0.024.0514.893.51
    下載: 導出CSV

    表  7  兩均相催化劑不同投加量元素分析結果(質量分數)

    Table  7.   Element analysis results of different dosage of two homogeneous catalysts %

    CatalystCatalyst dosageCHNSOHigh heating value/
    (MJ?kg?1
    None065.198.069.191.0612.9630.1290
    Na2CO3171.488.686.291.2512.3031.9690
    372.288.667.071.2910.7132.3950
    572.398.577.151.2110.6832.3390
    873.648.386.831.239.9332.6510
    1074.168.776.881.189.0133.3220
    NaOH172.468.657.011.3610.5234.4750
    372.228.727.191.3110.5734.4690
    568.128.606.451.0315.8033.5620
    870.758.866.110.8913.3934.4700
    1073.148.736.971.249.2734.7320
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Zhu P, Zhang J B, Chen D J. Current research and suggestions for treatment of antibiotic manufacturing biowaste. Chin J Antibiot, 2013, 38(9): 647

    朱培, 張建斌, 陳代杰. 抗生素菌渣處理的研究現狀和建議. 中國抗生素雜志, 2013, 38(9):647
    [2] Wang Z Q, Hong C, Xing Y, et al. Combustion behaviors and kinetics of sewage sludge blended with pulverized coal: With and without catalysts. Waste Manag, 2018, 74: 288 doi: 10.1016/j.wasman.2018.01.002
    [3] You Z P, Hao C S, Jiao Y G, et al. Pyrolysis and combustion characteristics comparison studies of two kinds of antibiotic residues. Ind Saf Environ Prot, 2016, 42(5): 41

    尤占平, 郝長生, 焦永剛, 等. 兩種抗生素菌渣熱解及燃燒特性對比研究. 工業安全與環保, 2016, 42(5):41
    [4] Li Z X, Tian B K, Zuo J E, et al. Progress in treatment and disposal technology of antibiotic bacterial residues. Environ Eng, 2012, 30(2): 72

    李再興, 田寶闊, 左劍惡, 等. 抗生素菌渣處理處置技術進展. 環境工程, 2012, 30(2):72
    [5] Yuan L M. Research on Detection Method of Cephalosporin Titer in Biopharmaceutical Residue and Resource Feasibility Study on Residue [Dissertation]. Harbin: Harbin Institute of Technology, 2014

    苑麗梅. 頭孢菌渣中殘留效價檢測方法及菌渣資源化可行性研究[學位論文]. 哈爾濱: 哈爾濱工業大學, 2014
    [6] Caprariis B D, Filippis P D, Petrullo A, et al. Hydrothermal liquefaction of biomass: Influence of temperature and biomass composition on the bio-oil production. Fuel, 2017, 208: 618 doi: 10.1016/j.fuel.2017.07.054
    [7] Demirbas A. Competitive liquid biofuels from biomass. Appl Energy, 2011, 88(1): 17 doi: 10.1016/j.apenergy.2010.07.016
    [8] Ramsurn H, Gupta R B. Production of biocrude from biomass by acidic subcritical water followed by alkaline supercritical water two-step liquefaction. Energy Fuels, 2012, 26(4): 2365 doi: 10.1021/ef2020414
    [9] Chen Y X, Ren X L, Wei Q F, et al. Hydrothermal liquefaction of Undaria pinnatifida residues to organic acids with recyclable trimethylamine. Bioresour Technol, 2016, 221: 477 doi: 10.1016/j.biortech.2016.09.073
    [10] Batan L Y, Graff G D, Bradley T H. Techno-economic and Monte Carlo probabilistic analysis of microalgae biofuel production system. Bioresour Technol, 2016, 219: 45 doi: 10.1016/j.biortech.2016.07.085
    [11] Jazrawi C, Biller P, He Y Y, et al. Two-stage hydrothermal liquefaction of a high-protein microalga. Algal Res, 2015, 8: 15 doi: 10.1016/j.algal.2014.12.010
    [12] Shakya R, Whelen J, Adhikari S, et al. Effect of temperature and Na2CO3 catalyst on hydrothermal liquefaction of algae. Algal Res, 2015, 12: 80 doi: 10.1016/j.algal.2015.08.006
    [13] Sun X W, Wang G F, Zhu L. Control status and research progress of the pollution in municipal solid waste incineration. J Anhui Agric Sci, 2008, 36(2): 670

    孫向武, 王國鋒, 朱磊. 垃圾焚燒污染控制現狀及研究進展. 安徽農業科學, 2008, 36(2):670
    [14] Chen W. Thermo-chemical liquefaction of corn stalk Wei. J Henan Norm Univ (Nat Sci Ed), 2011, 39(3): 144

    陳瑋. 玉米秸稈水熱法催化液化研究. 河南師范大學學報(自然科學版), 2011, 39(3):144
    [15] Kumar M, Oyedun O A, Kumar A. A review on the current status of various hydrothermal technologies on biomass feedstock. Renew Sustain Energy Rev, 2018, 81: 1742 doi: 10.1016/j.rser.2017.05.270
    [16] Ross A B, Biller P, Kubacki M L, et al. Hydrothermal processing of microalgae using alkali and organic acids. Fuel, 2010, 89(9): 2234 doi: 10.1016/j.fuel.2010.01.025
    [17] Xue Y, Chen H Y, Zhao W N, et al. A review on the operating conditions of producing bio-oil from hydrothermal liquefaction of biomass. Int J Energy Res, 2016, 40(7): 865 doi: 10.1002/er.3473
    [18] Chen Y, Mu R T, Min D Y, et al. Catalytic hydrothermal liquefaction for bio-oil production over CNTs supported metal catalysts. Chem Eng Sci, 2017, 161: 299 doi: 10.1016/j.ces.2016.12.010
    [19] Reddy H K, Muppaneni T, Ponnusamy S, et al. Temperature effect on hydrothermal liquefaction of Nannochloropsis gaditana and Chlorella sp. Appl Energy, 2016, 165: 943 doi: 10.1016/j.apenergy.2015.11.067
    [20] Raheem A, Wan Azlina W A K G, Taufiq Yap Y H, et al. Thermochemical conversion of microalgal biomass for biofuel production. Renew Sustain Energy Rev, 2015, 49: 990 doi: 10.1016/j.rser.2015.04.186
    [21] Zou S P, Wu Y L, Yang M D, et al. Correction: Bio-oil production from sub- and supercritical water liquefaction of microalgae Dunaliella tertiolecta and related properties. Energy Environ Sci, 2015, 8(7): 2128 doi: 10.1039/C5EE90030A
    [22] Muppaneni T, Reddy H K, Selvaratnam T, et al. Hydrothermal liquefaction of Cyanidioschyzon merolae and the influence of catalysts on products. Bioresour Technol, 2017, 223: 91 doi: 10.1016/j.biortech.2016.10.022
    [23] Xu C B, Lad N. Production of heavy oils with high caloric values by direct liquefaction of woody biomass in sub/near-critical water. Energy Fuels, 2008, 22(1): 635 doi: 10.1021/ef700424k
    [24] Zhou D, Zhang L, Zhang S C, et al. Hydrothermal liquefaction of macroalgae enteromorpha prolifera to bio-oil. Energy Fuels, 2010, 24(7): 4054 doi: 10.1021/ef100151h
    [25] Yang W C, Li X G, Liu S S, et al. Direct hydrothermal liquefaction of undried macroalgae Enteromorpha prolifera using acid catalysts. Energy Convers Manag, 2014, 87: 938 doi: 10.1016/j.enconman.2014.08.004
    [26] Minowa T, Zhen F, Ogi T. Cellulose decomposition in hot-compressed water with alkali or nickel catalyst. J Supercrit Fluids, 1998, 13(1-3): 253 doi: 10.1016/S0896-8446(98)00059-X
    [27] Fang Z, Minowa T, Smith R L, et al. Liquefaction and gasification of cellulose with Na2CO3 and Ni in subcritical water at 350 ℃. Ind Eng Chem Res, 2004, 43(10): 2454 doi: 10.1021/ie034146t
    [28] Song C C, Hu H Q, Zhu S W, et al. Nonisothermal catalytic liquefaction of corn stalk in subcritical and supercritical water. Energy Fuels, 2004, 18(1): 90 doi: 10.1021/ef0300141
    [29] Karag?z S, Bhaskar T, Muto A, et al. Low-temperature catalytic hydrothermal treatment of wood biomass: Analysis of liquid products. Chem Eng J, 2005, 108(1-2): 127 doi: 10.1016/j.cej.2005.01.007
    [30] Wang F, Chang Z F, Duan P G, et al. Hydrothermal liquefaction of Litsea cubeba seed to produce bio-oils. Bioresour Technol, 2013, 149: 509 doi: 10.1016/j.biortech.2013.09.108
    [31] Chen W, Yang H P, Chen Y Q, et al. Transformation of nitrogen and evolution of N-containing species during algae pyrolysis. Environ Sci Technol, 2017, 51(11): 6570 doi: 10.1021/acs.est.7b00434
    [32] Toor S S, Rosendahl L, Rudolf A. Hydrothermal liquefaction of biomass: A review of subcritical water technologies. Energy, 2011, 36(5): 2328 doi: 10.1016/j.energy.2011.03.013
    [33] Yu Y, Wu H W. Significant differences in the hydrolysis behavior of amorphous and crystalline portions within microcrystalline cellulose in hot-compressed water. Ind Eng Chem Res, 2010, 49(8): 3902 doi: 10.1021/ie901925g
    [34] Anastasakis K, Ross A B. Hydrothermal liquefaction of the brown macro-alga Laminaria Saccharina: Effect of reaction conditions on product distribution and composition. Bioresour Technol, 2011, 102(7): 4876 doi: 10.1016/j.biortech.2011.01.031
    [35] Bach Q V, de Sillero M V, Tran K Q, et al. Fast hydrothermal liquefaction of a Norwegian macro-alga: Screening tests. Algal Res, 2014, 6: 271 doi: 10.1016/j.algal.2014.05.009
    [36] Ifrim G A, Titica M, Cogne G, et al. Dynamic pH model for autotrophic growth of microalgae in photobioreactor: A tool for monitoring and control purposes. AIChE J, 2014, 60(2): 585 doi: 10.1002/aic.14290
    [37] Zhang B, Lin Q S, Zhang Q H, et al. Catalytic hydrothermal liquefaction of Euglena sp. microalgae over zeolite catalysts for the production of bio-oil. RSC Adv, 2017, 7(15): 8944
    [38] Lee J, Choi D, Kwon E E, et al. Functional modification of hydrothermal liquefaction products of microalgal biomass using CO2. Energy, 2017, 137: 412 doi: 10.1016/j.energy.2017.03.077
    [39] Yeh T M, Dickinson J G, Franck A, et al. Hydrothermal catalytic production of fuels and chemicals from aquatic biomass. J Chem Technol Biotechnol, 2013, 88(1): 13 doi: 10.1002/jctb.3933
    [40] Valdez P J, Dickinson J G, Savage P E. Characterization of product fractions from hydrothermal liquefaction of nannochloropsis sp. and the influence of solvents. Energy Fuels, 2011, 25(7): 3235 doi: 10.1021/ef2004046
  • 加載中
圖(3) / 表(7)
計量
  • 文章訪問數:  494
  • HTML全文瀏覽量:  340
  • PDF下載量:  32
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-09-17
  • 網絡出版日期:  2021-01-28
  • 刊出日期:  2022-01-01

目錄

    /

    返回文章
    返回