<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

硫酸鹽侵蝕作用下纖維鋰渣混凝土裂縫的分形特征

張廣泰 陳勇 魯海波 李雪藩

張廣泰, 陳勇, 魯海波, 李雪藩. 硫酸鹽侵蝕作用下纖維鋰渣混凝土裂縫的分形特征[J]. 工程科學學報, 2022, 44(2): 208-216. doi: 10.13374/j.issn2095-9389.2020.09.10.001
引用本文: 張廣泰, 陳勇, 魯海波, 李雪藩. 硫酸鹽侵蝕作用下纖維鋰渣混凝土裂縫的分形特征[J]. 工程科學學報, 2022, 44(2): 208-216. doi: 10.13374/j.issn2095-9389.2020.09.10.001
ZHANG Guang-tai, CHEN Yong, LU Hai-bo, LI Xue-fan. Fractal characteristics of fiber lithium slag concrete cracks under sulfate attack[J]. Chinese Journal of Engineering, 2022, 44(2): 208-216. doi: 10.13374/j.issn2095-9389.2020.09.10.001
Citation: ZHANG Guang-tai, CHEN Yong, LU Hai-bo, LI Xue-fan. Fractal characteristics of fiber lithium slag concrete cracks under sulfate attack[J]. Chinese Journal of Engineering, 2022, 44(2): 208-216. doi: 10.13374/j.issn2095-9389.2020.09.10.001

硫酸鹽侵蝕作用下纖維鋰渣混凝土裂縫的分形特征

doi: 10.13374/j.issn2095-9389.2020.09.10.001
基金項目: 國家自然科學基金資助項目(51968070)
詳細信息
    通訊作者:

    E-mail: zgtlxh@126.com

  • 中圖分類號: TU503

Fractal characteristics of fiber lithium slag concrete cracks under sulfate attack

More Information
  • 摘要: 為探究新型混凝土受硫酸鹽侵蝕后的力學性能,采用質量分數為5%的硫酸鹽溶液全浸泡加速侵蝕法,對11組聚丙烯纖維混凝土(PC)試塊、11組聚丙烯纖維鋰渣混凝土(PLiC)試塊、8根PC大偏心受壓柱和8根PLiC大偏心受壓柱進行侵蝕試驗,得到了不同侵蝕時間下混凝土的力學性能。基于分形理論分析了試塊及構件破壞時表面裂縫分布的分形特征,詳細討論了試塊及構件表面裂縫分形維數與其侵蝕時間、抗壓強度、極限承載力之間的關系。研究表明,PC和PLiC立方體抗壓強度隨侵蝕天數先增加后降低,在120 d達到最大;試塊及構件破壞時表面裂縫分布具有分形特征,試塊表面裂縫分形維數隨侵蝕天數的增加呈現先增加后減少再增加的規律,隨試塊抗壓強度的提高而減少;PC及PLiC混凝土大偏心柱極限承載力隨侵蝕天數的增加先增加后減少,鋰渣的摻入可以提高聚丙烯纖維混凝土柱的抗硫酸鹽侵蝕能力,構件破壞時表面裂縫分形維數隨硫酸鹽侵蝕天數呈現震蕩上升的趨勢;因此混凝土表面裂縫的分形特征可作為判定構件損傷程度的指標之一,可為今后對在役混凝土結構承載力和壽命預測提供參考。

     

  • 圖  1  試件尺寸及配筋

    Figure  1.  Specimen size and reinforcement

    圖  2  混凝土柱侵蝕及試驗圖。(a)已施加荷載的鋼筋混凝土柱;(b)混凝土柱大偏心受壓試驗

    Figure  2.  Corrosion and test of reinforced concrete column: (a) loaded reinforced concrete column; (b) large eccentric compression test of reinforced concrete column

    圖  3  不同侵蝕時間下的聚丙烯纖維鋰渣混凝土外觀形貌。(a)0 d;(b)30 d;(c)60 d;(d)90 d;(e)120 d;(f)150 d

    Figure  3.  Appearance morphology of polypropylene fiber lithium slag concrete under different erosion times: (a) 0 d; (b) 30 d; (c) 60 d; (d) 90 d; (e) 120 d; (f) 150 d

    圖  4  PC混凝土柱和PLiC混凝土柱破壞形態

    Figure  4.  Failure modes of PC concrete column and PLiC concrete column

    圖  5  PLiC試塊破壞裂縫圖

    Figure  5.  Failure fracture diagram of PLiC test block

    圖  6  PLiC試塊裂縫lnN(r)?ln(1/r)曲線

    Figure  6.  lnN(r)?ln(1/r) curve of PLiC test block crack

    圖  7  不同侵蝕時間下立方體抗壓強度

    Figure  7.  Compressive strength of cube at different times of erosion

    圖  8  侵蝕天數與分形維數的關系

    Figure  8.  Relationship between erosion days and fractal dimension

    圖  9  試塊抗壓強度與分形維數的關系

    Figure  9.  Relationship between the compressive strength of test block and fractal dimension

    圖  10  PLiC?30受壓柱破壞裂縫圖

    Figure  10.  Failure fracture diagram of PLiC?30 compression column

    圖  11  PLiC?30受壓柱裂縫lnN(r)?ln(1/r)曲線

    Figure  11.  lnN(r)?ln(1/r) curve of PLiC?30 compression column crack

    圖  12  構件極限承載力與侵蝕天數

    Figure  12.  Ultimate bearing capacity and erosion days of members

    圖  13  侵蝕天數與分形維數的關系

    Figure  13.  Relationship between erosion days and fractal dimension

    圖  14  分形維數與極限承載力的關系

    Figure  14.  Relationship between fractal dimension and ultimate bearing capacity

    表  1  鋰渣粉末主要成分

    Table  1.   Main components of lithium slag powder %

    Chemical compositionSiO2AI2O3Fe2O3SO3CaOLi2O
    Mass fraction54.301.801.408.307.900.70
    下載: 導出CSV

    表  2  聚丙烯纖維參數

    Table  2.   Parameters of polypropylene fibers

    Fiber typeLength/mmDensity/(g·cm?3)Tensile strength/MPaDiameter/μmElasticity modulus/GPa
    Polyprorylene fiber190.9153033>3.5
    下載: 導出CSV

    表  3  混凝土配合比

    Table  3.   Mix proportions of concrete

    Type of test
    block
    Polypropylene fiber/
    (kg·m?3)
    Lithium slag/
    %
    Cement/
    (kg·m?3)
    Cobblestone/
    (kg·m?3)
    Sand/
    (kg·m?3)
    Water/
    (kg·m?3)
    Water reducer/
    (kg·m?3)
    PC1.203821161682172.81.92
    PLiC1.2203081161682172.81.92
    下載: 導出CSV

    表  4  不同侵蝕時間下試塊抗壓強度及裂縫分形維數

    Table  4.   Compressive strength and fracture fractal dimension of test block under different erosion times

    Type of test blockCube compressive strength /MPaFractal dimensionR2Type of test blockCube compressive strength /MPaFractal dimensionR2
    PC?041.31.4070.982PC?sulfate?041.31.4070.988
    PC?3042.71.4250.991PC?sulfate?3042.01.4150.987
    PC?6043.91.4350.994PC?sulfate?6043.41.4020.995
    PC?9046.61.4510.991PC?sulfate?9045.01.3960.994
    PC?12057.81.3790.982PC?sulfate?12054.31.3640.981
    PC?15054.31.3750.993PC?sulfate?15051.61.4380.989
    PLiC?043.91.3910.991PLiC?sulfate?043.91.3910.985
    PLiC?3044.71.4010.989PLiC?sulfate?3044.01.4020.993
    PLiC?6049.71.4740.992PLiC?sulfate?6045.81.3560.987
    PLiC?9052.31.4410.987PLiC?sulfate?9049.51.3650.986
    PLiC?12059.61.4250.994PLiC?sulfate?12057.51.3850.993
    PLiC?15055.31.4830.992PLiC?sulfate?15055.81.4350.991
    Note:PC?sulfate?30 represents that polypropylene fiber concrete corroded in sodium sulfate solution for 30 days.
    下載: 導出CSV

    表  5  PC和PLiC大偏心受壓柱承載力及破壞裂縫分形維數

    Table  5.   Bearing capacity of large eccentric compress reinforced concrete column and fractal dimension of failure crack

    Type of test blockUltimate load/ kNFractal dimensionR2Type of test blockUltimate load/ kNFractal dimensionR2
    PC?0?01751.2610.997PLiC?0?01801.2530.991
    PC?30?0.11801.2240.991PLiC?30?0.11941.2330.993
    PC?60?0.11881.1420.995PLiC?60?0.12001.1330.994
    PC?90?0.11921.3420.993PLiC?90?0.12051.2910.995
    PC?120?0.12001.2120.994PLiC?120?0.12201.1810.991
    PC?150?0.11851.2650.997PLiC?150?0.12051.3240.996
    PC?90?0.21981.2280.996PLiC?90?0.22201.2670.994
    PC?90?0.351751.2790.994PLiC?90?0.351821.2650.993
    Note:PC?30?0.1 represents polypropylene fiber concrete with stress ratio of 0.1 and erosion days of 30 d.
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Han Y D, Liu C, Wang Z B, et al. Uniaxial compressive behavior of ECC under sulfate erosion in drying-wetting cycles. J Build Mater, 2020, 23(4): 846 doi: 10.3969/j.issn.1007-9629.2020.04.016

    韓宇棟, 劉暢, 王振波, 等. 硫酸鹽干濕循環下ECC的軸壓力學行為. 建筑材料學報, 2020, 23(4):846 doi: 10.3969/j.issn.1007-9629.2020.04.016
    [2] Zhang Z Y, Zhou J T, Zou Y, et al. Effect of sulfate attack on the shear performance of concrete. China Civil Eng J, 2020, 53(7): 64

    張中亞, 周建庭, 鄒楊, 等. 硫酸鹽侵蝕對混凝土抗剪性能的影響. 土木工程學報, 2020, 53(7):64
    [3] Wee T H, Suryavanshi A K, Wong S F, et al. Sulfate resistance of concrete containing mineral admixtures. ACI Mater J, 2000, 97(5): 536
    [4] Mangat P S, Khatib J M. Influence of fly-ash, silica fume, and slag on sulfate resistance of concrete. ACI Mater J, 1993, 92(5): 542
    [5] Bai W F, Liu L A, Guan J F, et al. The constitutive model of concrete subjected to sulfate attack based on statistical damage theory. Eng Mech, 2019, 36(2): 66 doi: 10.6052/j.issn.1000-4750.2017.09.0734

    白衛峰, 劉霖艾, 管俊峰, 等. 基于統計損傷理論的硫酸鹽侵蝕混凝土本構模型研究. 工程力學, 2019, 36(2):66 doi: 10.6052/j.issn.1000-4750.2017.09.0734
    [6] Kou J L, Liu F F, Zhao D D, et al. Experimental study on resistance to sulfate attack of active powder concrete under normal temperature curing condition. J Nat Disast, 2020, 29(3): 76

    寇佳亮, 劉菲菲, 趙丹丹, 等. 常溫養護條件下活性粉末混凝土抗硫酸鹽侵蝕性能試驗研究. 自然災害學報, 2020, 29(3):76
    [7] Shi L, Xie D, Wang X M, et al. Effect of liquid erosion inhibitor on water absorption and salt crystallization resistance of concrete. Materi Rev, 2020, 34(14): 14093 doi: 10.11896/cldb.19060175

    石亮, 謝德擎, 王學明, 等. 抗侵蝕抑制劑對混凝土吸水性能及抗鹽結晶性能的影響. 材料導報, 2020, 34(14):14093 doi: 10.11896/cldb.19060175
    [8] Li B X, Fang Q, Fang P. Durability of high-volume mineral admixture concrete half immersed in sodium sulfate solution. J Harbin Eng Univ, 2020, 41(6): 892

    李北星, 方晴, 方鵬. 大摻量摻合料混凝土半浸泡于硫酸鹽溶液中的耐久性. 哈爾濱工程大學學報, 2020, 41(6):892
    [9] Lu J Z, Tian L Z, Liu Y, et al. Experimental study of the durability of concrete under coupling effect of axial compression and sulfate attack. J Basic Sci Eng, 2020, 28(2): 386

    逯靜洲, 田立宗, 劉瑩, 等. 軸壓與硫酸鹽實時耦合作用下混凝土耐久性試驗研究. 應用基礎與工程科學學報, 2020, 28(2):386
    [10] Xiao Q H, Cao Z Y, Guan X, et al. Degradation law of recycled concrete under the coupling of freeze-thaw and sulfate erosion. Bull Chin Ceram Soc, 2020, 39(2): 352

    肖前慧, 曹志遠, 關虓, 等. 凍融與硫酸鹽侵蝕耦合作用下再生混凝土劣化規律. 硅酸鹽通報, 2020, 39(2):352
    [11] Li B L, Huo B B, You N Q, et al. Sulfate resistance of steel slag blended / GGBFS blended cement mortars under different curing conditions. J Southeast Univ Nat Sci, 2019, 49(6): 1144 doi: 10.3969/j.issn.1001-0505.2019.06.018

    李保亮, 霍彬彬, 尤南喬, 等. 不同養護條件下鋼渣/礦渣復合水泥膠砂的耐硫酸鹽侵蝕性能. 東南大學學報(自然科學版), 2019, 49(6):1144 doi: 10.3969/j.issn.1001-0505.2019.06.018
    [12] Tuerkmen I, Gavgali M. Influence of mineral admixtures on the some properties and corrosion of steel embedded in sodium sulfate solution of concrete. Mater Lett, 2003, 57(21): 3222 doi: 10.1016/S0167-577X(03)00039-9
    [13] Mandelbrot B B, Passoja D E, Paullay A J. Fractal character of fracture surfaces of metals. Nature, 1984, 308(5961): 721 doi: 10.1038/308721a0
    [14] Armandei M, de Souza Sanchez Filho E. Correlation between fracture roughness and material strength parameters in SFRCs using 2D image analysis. Constr Build Mater, 2017, 140: 82 doi: 10.1016/j.conbuildmat.2017.02.103
    [15] Yan A, Wu K R, Zhang D, et al. Influence of concrete composition on the characterization of fracture surface. Cem Concr Compos, 2003, 25(1): 153 doi: 10.1016/S0958-9465(02)00004-5
    [16] Ince R G?r M, Alyama? K E, et al. Multi-fractal scaling law for split strength of concrete cubes. Mag Concr Res, 2016, 68(3): 141 doi: 10.1680/macr.15.00070
    [17] Konkol J, Prokopski G. Fracture toughness and fracture surfaces morphology of metakaolinite-modified concrete. Constr Build Mater, 2016, 123: 638 doi: 10.1016/j.conbuildmat.2016.07.025
    [18] Cheng S, Jin N G, Tian Y, et al. New graphic method for quantitatively analyzing characteristic parameters of concrete cracks. J Zhejiang Univ Eng Sci, 2011, 45(6): 1062 doi: 10.3785/j.issn.1008-973X.2011.06.017

    成盛, 金南國, 田野, 等. 混凝土裂縫特征參數的圖形化定量分析新方法. 浙江大學學報(工學版), 2011, 45(6):1062 doi: 10.3785/j.issn.1008-973X.2011.06.017
    [19] Cao M S, Ren Q W. Damage detection of reinforced concrete structures based on fractal characteristic factor. China Civil Eng J, 2005, 38(12): 59 doi: 10.3321/j.issn:1000-131X.2005.12.010

    曹茂森, 任青文. 鋼筋混凝土結構損傷檢測的分形特征因子. 土木工程學報, 2005, 38(12):59 doi: 10.3321/j.issn:1000-131X.2005.12.010
    [20] Jiao C J, Li X B, Cheng C M, et al. Dynamic damage constitutive relationship of high strength concrete based on fractal theory. Explos Shock Waves, 2018, 38(4): 925

    焦楚杰, 李習波, 程從密, 等. 基于分形理論的高強混凝土動態損傷本構關系. 爆炸與沖擊, 2018, 38(4):925
    [21] Chen W C, Shi H J, Chao Z Q. Developing nature of cracks in reinforced concrete beam bridge with fractal theory. J Chang'an Univ Nat Sci, 2003, 23(6): 44

    陳萬春, 師暉軍, 晁宗棋. 基于分形理論的鋼筋混凝土梁式橋裂縫發育特征. 長安大學學報(自然科學版), 2003, 23(6):44
    [22] Li Y Y, Rong X, Wang T C. Fractal characteristics of crack distribution of concrete beams with high strength stirrup. Eng Mech, 2009, 26(Suppl1): 72

    李艷艷, 戎賢, 王鐵成. 高強箍筋混凝土梁裂縫分布的分形特征. 工程力學, 2009, 26(增刊1): 72
    [23] Fan Y F, Zhou J, Feng X. Fractals in failure of corroded reinforced concrete members. Eng Mech, 2002, 19(5): 123 doi: 10.3969/j.issn.1000-4750.2002.05.023

    范穎芳, 周晶, 馮新. 受腐蝕鋼筋混凝土構件破壞過程的分形行為. 工程力學, 2002, 19(5):123 doi: 10.3969/j.issn.1000-4750.2002.05.023
    [24] Luan H Y, Fan Y F, Wang D W, et al. Study on the flexural behavior of the CFRP-reinforced concrete beam with fractal theory. Eng Mech, 2015, 32(4): 160

    欒海洋, 范穎芳, 王大為, 等. 基于分形理論的CFRP布增強混凝土梁抗彎性能研究. 工程力學, 2015, 32(4):160
    [25] Ministry of Housing and Urban-Rural Development of the People’s Republic of China. GB50081—2019 Standard for Test Methods of Concrete Physical and Mechanical Properties. Beijing: China Architecture & Building Press, 2019

    中華人民共和國住房和城鄉建設部. GB/T50081—2019混凝土物理力學性能試驗方法標準. 北京: 中國建筑工業出版社, 2019
    [26] Ministry of Housing and Urban-Rural Development of the People’s Republic of China. GB/T50152—2012 Standard for Test Method of Concrete Structures. Beijing: China Architecture & Building Press, 2012

    中華人民共和國住房和城鄉建設部. GB/T50152—2012混凝土結構試驗方法標準. 北京: 中國建筑工業出版社, 2012
    [27] Mandelbrot B B. The Fractal Geometry of Nature. San Francisco: W. H. Freeman and Company, 1982
    [28] Liu J H, Zhao L, Ji H G. Influence of initial damage on degradation and deterioration of concrete under sulfate attack. Chin J Eng, 2017, 39(8): 1278

    劉娟紅, 趙力, 紀洪廣. 初始損傷對混凝土硫酸鹽腐蝕劣化性能的影響. 工程科學學報, 2017, 39(8):1278
    [29] Wen Y, Xu H, Han D M. Study on the effect of lithium slag powders upon the sulfate corrosion resistance of cement material. Concrete, 2010(12): 90 doi: 10.3969/j.issn.1002-3550.2010.12.029

    溫勇, 徐虎, 韓東明. 鋰渣粉對水泥基材料抗硫酸鹽侵蝕性能的影響. 混凝土, 2010(12):90 doi: 10.3969/j.issn.1002-3550.2010.12.029
  • 加載中
圖(14) / 表(5)
計量
  • 文章訪問數:  1418
  • HTML全文瀏覽量:  791
  • PDF下載量:  44
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-09-08
  • 網絡出版日期:  2021-01-04
  • 刊出日期:  2022-02-15

目錄

    /

    返回文章
    返回