-
摘要: 為探究新型混凝土受硫酸鹽侵蝕后的力學性能,采用質量分數為5%的硫酸鹽溶液全浸泡加速侵蝕法,對11組聚丙烯纖維混凝土(PC)試塊、11組聚丙烯纖維鋰渣混凝土(PLiC)試塊、8根PC大偏心受壓柱和8根PLiC大偏心受壓柱進行侵蝕試驗,得到了不同侵蝕時間下混凝土的力學性能。基于分形理論分析了試塊及構件破壞時表面裂縫分布的分形特征,詳細討論了試塊及構件表面裂縫分形維數與其侵蝕時間、抗壓強度、極限承載力之間的關系。研究表明,PC和PLiC立方體抗壓強度隨侵蝕天數先增加后降低,在120 d達到最大;試塊及構件破壞時表面裂縫分布具有分形特征,試塊表面裂縫分形維數隨侵蝕天數的增加呈現先增加后減少再增加的規律,隨試塊抗壓強度的提高而減少;PC及PLiC混凝土大偏心柱極限承載力隨侵蝕天數的增加先增加后減少,鋰渣的摻入可以提高聚丙烯纖維混凝土柱的抗硫酸鹽侵蝕能力,構件破壞時表面裂縫分形維數隨硫酸鹽侵蝕天數呈現震蕩上升的趨勢;因此混凝土表面裂縫的分形特征可作為判定構件損傷程度的指標之一,可為今后對在役混凝土結構承載力和壽命預測提供參考。Abstract: Natural corrosion of concrete structure due to sulfate poses a serious threat to people's lives and property. Therefore, it is of great practical significance to study the phenomenon of sulfate corrosion on concrete. In order to explore the mechanical properties of a new type of concrete corroded by sulfate, a full immersion accelerated erosion method was used with 5% sulfate solution. Erosion tests were performed on 11 groups of polypropylene fiber reinforced concrete (PC) specimens, 11 groups of polypropylene fiber lithium slag concrete (PLiC) specimens, 8 PC columns with large eccentricity, and 8 PLiC large eccentric columns. The mechanical properties of concrete under different erosion times are obtained. Based on the fractal theory, the fractal characteristics of surface crack distribution of specimens and columns are analyzed. In addition, the relationship between the fractal dimension of surface crack and erosion time, compressive strength, and ultimate bearing capacity is discussed. Results show that the compressive strength of PC and PLiC initially increases and then decreases with increased erosion days, reaching a maximum of 120 days. The distribution of surface cracks is observed to be fractal when they are broken. With increased erosion days, fractal dimension of surface cracks initially increases, then decreases, and finally increases again. On the other hand, a decreasing trend of fractal dimension of surface cracks is observed with increased compressive strength. The ultimate bearing capacity of PC and PLiC columns with large eccentricity increases first and then decreases with erosion days. Addition of lithium slag is observed to improve the sulfate resistance of polypropylene fiber reinforced concrete columns. With broken members, fractal dimension of surface cracks presents a rising trend of shock with sulfate erosion days. Results signify that fractal characteristics of concrete surface cracks can be used as one of the indexes to determine the damage degree of members, which can provide reference for the prediction of bearing capacity and service life of concrete structures in the future.
-
Key words:
- sulfate attack /
- fractal theory /
- large eccentric column /
- polypropylene fiber /
- lithium slag
-
表 1 鋰渣粉末主要成分
Table 1. Main components of lithium slag powder
% Chemical composition SiO2 AI2O3 Fe2O3 SO3 CaO Li2O Mass fraction 54.30 1.80 1.40 8.30 7.90 0.70 表 2 聚丙烯纖維參數
Table 2. Parameters of polypropylene fibers
Fiber type Length/mm Density/(g·cm?3) Tensile strength/MPa Diameter/μm Elasticity modulus/GPa Polyprorylene fiber 19 0.91 530 33 >3.5 表 3 混凝土配合比
Table 3. Mix proportions of concrete
Type of test
blockPolypropylene fiber/
(kg·m?3)Lithium slag/
%Cement/
(kg·m?3)Cobblestone/
(kg·m?3)Sand/
(kg·m?3)Water/
(kg·m?3)Water reducer/
(kg·m?3)PC 1.2 0 382 1161 682 172.8 1.92 PLiC 1.2 20 308 1161 682 172.8 1.92 表 4 不同侵蝕時間下試塊抗壓強度及裂縫分形維數
Table 4. Compressive strength and fracture fractal dimension of test block under different erosion times
Type of test block Cube compressive strength /MPa Fractal dimension R2 Type of test block Cube compressive strength /MPa Fractal dimension R2 PC?0 41.3 1.407 0.982 PC?sulfate?0 41.3 1.407 0.988 PC?30 42.7 1.425 0.991 PC?sulfate?30 42.0 1.415 0.987 PC?60 43.9 1.435 0.994 PC?sulfate?60 43.4 1.402 0.995 PC?90 46.6 1.451 0.991 PC?sulfate?90 45.0 1.396 0.994 PC?120 57.8 1.379 0.982 PC?sulfate?120 54.3 1.364 0.981 PC?150 54.3 1.375 0.993 PC?sulfate?150 51.6 1.438 0.989 PLiC?0 43.9 1.391 0.991 PLiC?sulfate?0 43.9 1.391 0.985 PLiC?30 44.7 1.401 0.989 PLiC?sulfate?30 44.0 1.402 0.993 PLiC?60 49.7 1.474 0.992 PLiC?sulfate?60 45.8 1.356 0.987 PLiC?90 52.3 1.441 0.987 PLiC?sulfate?90 49.5 1.365 0.986 PLiC?120 59.6 1.425 0.994 PLiC?sulfate?120 57.5 1.385 0.993 PLiC?150 55.3 1.483 0.992 PLiC?sulfate?150 55.8 1.435 0.991 Note:PC?sulfate?30 represents that polypropylene fiber concrete corroded in sodium sulfate solution for 30 days. 表 5 PC和PLiC大偏心受壓柱承載力及破壞裂縫分形維數
Table 5. Bearing capacity of large eccentric compress reinforced concrete column and fractal dimension of failure crack
Type of test block Ultimate load/ kN Fractal dimension R2 Type of test block Ultimate load/ kN Fractal dimension R2 PC?0?0 175 1.261 0.997 PLiC?0?0 180 1.253 0.991 PC?30?0.1 180 1.224 0.991 PLiC?30?0.1 194 1.233 0.993 PC?60?0.1 188 1.142 0.995 PLiC?60?0.1 200 1.133 0.994 PC?90?0.1 192 1.342 0.993 PLiC?90?0.1 205 1.291 0.995 PC?120?0.1 200 1.212 0.994 PLiC?120?0.1 220 1.181 0.991 PC?150?0.1 185 1.265 0.997 PLiC?150?0.1 205 1.324 0.996 PC?90?0.2 198 1.228 0.996 PLiC?90?0.2 220 1.267 0.994 PC?90?0.35 175 1.279 0.994 PLiC?90?0.35 182 1.265 0.993 Note:PC?30?0.1 represents polypropylene fiber concrete with stress ratio of 0.1 and erosion days of 30 d. www.77susu.com -
參考文獻
[1] Han Y D, Liu C, Wang Z B, et al. Uniaxial compressive behavior of ECC under sulfate erosion in drying-wetting cycles. J Build Mater, 2020, 23(4): 846 doi: 10.3969/j.issn.1007-9629.2020.04.016韓宇棟, 劉暢, 王振波, 等. 硫酸鹽干濕循環下ECC的軸壓力學行為. 建筑材料學報, 2020, 23(4):846 doi: 10.3969/j.issn.1007-9629.2020.04.016 [2] Zhang Z Y, Zhou J T, Zou Y, et al. Effect of sulfate attack on the shear performance of concrete. China Civil Eng J, 2020, 53(7): 64張中亞, 周建庭, 鄒楊, 等. 硫酸鹽侵蝕對混凝土抗剪性能的影響. 土木工程學報, 2020, 53(7):64 [3] Wee T H, Suryavanshi A K, Wong S F, et al. Sulfate resistance of concrete containing mineral admixtures. ACI Mater J, 2000, 97(5): 536 [4] Mangat P S, Khatib J M. Influence of fly-ash, silica fume, and slag on sulfate resistance of concrete. ACI Mater J, 1993, 92(5): 542 [5] Bai W F, Liu L A, Guan J F, et al. The constitutive model of concrete subjected to sulfate attack based on statistical damage theory. Eng Mech, 2019, 36(2): 66 doi: 10.6052/j.issn.1000-4750.2017.09.0734白衛峰, 劉霖艾, 管俊峰, 等. 基于統計損傷理論的硫酸鹽侵蝕混凝土本構模型研究. 工程力學, 2019, 36(2):66 doi: 10.6052/j.issn.1000-4750.2017.09.0734 [6] Kou J L, Liu F F, Zhao D D, et al. Experimental study on resistance to sulfate attack of active powder concrete under normal temperature curing condition. J Nat Disast, 2020, 29(3): 76寇佳亮, 劉菲菲, 趙丹丹, 等. 常溫養護條件下活性粉末混凝土抗硫酸鹽侵蝕性能試驗研究. 自然災害學報, 2020, 29(3):76 [7] Shi L, Xie D, Wang X M, et al. Effect of liquid erosion inhibitor on water absorption and salt crystallization resistance of concrete. Materi Rev, 2020, 34(14): 14093 doi: 10.11896/cldb.19060175石亮, 謝德擎, 王學明, 等. 抗侵蝕抑制劑對混凝土吸水性能及抗鹽結晶性能的影響. 材料導報, 2020, 34(14):14093 doi: 10.11896/cldb.19060175 [8] Li B X, Fang Q, Fang P. Durability of high-volume mineral admixture concrete half immersed in sodium sulfate solution. J Harbin Eng Univ, 2020, 41(6): 892李北星, 方晴, 方鵬. 大摻量摻合料混凝土半浸泡于硫酸鹽溶液中的耐久性. 哈爾濱工程大學學報, 2020, 41(6):892 [9] Lu J Z, Tian L Z, Liu Y, et al. Experimental study of the durability of concrete under coupling effect of axial compression and sulfate attack. J Basic Sci Eng, 2020, 28(2): 386逯靜洲, 田立宗, 劉瑩, 等. 軸壓與硫酸鹽實時耦合作用下混凝土耐久性試驗研究. 應用基礎與工程科學學報, 2020, 28(2):386 [10] Xiao Q H, Cao Z Y, Guan X, et al. Degradation law of recycled concrete under the coupling of freeze-thaw and sulfate erosion. Bull Chin Ceram Soc, 2020, 39(2): 352肖前慧, 曹志遠, 關虓, 等. 凍融與硫酸鹽侵蝕耦合作用下再生混凝土劣化規律. 硅酸鹽通報, 2020, 39(2):352 [11] Li B L, Huo B B, You N Q, et al. Sulfate resistance of steel slag blended / GGBFS blended cement mortars under different curing conditions. J Southeast Univ Nat Sci, 2019, 49(6): 1144 doi: 10.3969/j.issn.1001-0505.2019.06.018李保亮, 霍彬彬, 尤南喬, 等. 不同養護條件下鋼渣/礦渣復合水泥膠砂的耐硫酸鹽侵蝕性能. 東南大學學報(自然科學版), 2019, 49(6):1144 doi: 10.3969/j.issn.1001-0505.2019.06.018 [12] Tuerkmen I, Gavgali M. Influence of mineral admixtures on the some properties and corrosion of steel embedded in sodium sulfate solution of concrete. Mater Lett, 2003, 57(21): 3222 doi: 10.1016/S0167-577X(03)00039-9 [13] Mandelbrot B B, Passoja D E, Paullay A J. Fractal character of fracture surfaces of metals. Nature, 1984, 308(5961): 721 doi: 10.1038/308721a0 [14] Armandei M, de Souza Sanchez Filho E. Correlation between fracture roughness and material strength parameters in SFRCs using 2D image analysis. Constr Build Mater, 2017, 140: 82 doi: 10.1016/j.conbuildmat.2017.02.103 [15] Yan A, Wu K R, Zhang D, et al. Influence of concrete composition on the characterization of fracture surface. Cem Concr Compos, 2003, 25(1): 153 doi: 10.1016/S0958-9465(02)00004-5 [16] Ince R G?r M, Alyama? K E, et al. Multi-fractal scaling law for split strength of concrete cubes. Mag Concr Res, 2016, 68(3): 141 doi: 10.1680/macr.15.00070 [17] Konkol J, Prokopski G. Fracture toughness and fracture surfaces morphology of metakaolinite-modified concrete. Constr Build Mater, 2016, 123: 638 doi: 10.1016/j.conbuildmat.2016.07.025 [18] Cheng S, Jin N G, Tian Y, et al. New graphic method for quantitatively analyzing characteristic parameters of concrete cracks. J Zhejiang Univ Eng Sci, 2011, 45(6): 1062 doi: 10.3785/j.issn.1008-973X.2011.06.017成盛, 金南國, 田野, 等. 混凝土裂縫特征參數的圖形化定量分析新方法. 浙江大學學報(工學版), 2011, 45(6):1062 doi: 10.3785/j.issn.1008-973X.2011.06.017 [19] Cao M S, Ren Q W. Damage detection of reinforced concrete structures based on fractal characteristic factor. China Civil Eng J, 2005, 38(12): 59 doi: 10.3321/j.issn:1000-131X.2005.12.010曹茂森, 任青文. 鋼筋混凝土結構損傷檢測的分形特征因子. 土木工程學報, 2005, 38(12):59 doi: 10.3321/j.issn:1000-131X.2005.12.010 [20] Jiao C J, Li X B, Cheng C M, et al. Dynamic damage constitutive relationship of high strength concrete based on fractal theory. Explos Shock Waves, 2018, 38(4): 925焦楚杰, 李習波, 程從密, 等. 基于分形理論的高強混凝土動態損傷本構關系. 爆炸與沖擊, 2018, 38(4):925 [21] Chen W C, Shi H J, Chao Z Q. Developing nature of cracks in reinforced concrete beam bridge with fractal theory. J Chang'an Univ Nat Sci, 2003, 23(6): 44陳萬春, 師暉軍, 晁宗棋. 基于分形理論的鋼筋混凝土梁式橋裂縫發育特征. 長安大學學報(自然科學版), 2003, 23(6):44 [22] Li Y Y, Rong X, Wang T C. Fractal characteristics of crack distribution of concrete beams with high strength stirrup. Eng Mech, 2009, 26(Suppl1): 72李艷艷, 戎賢, 王鐵成. 高強箍筋混凝土梁裂縫分布的分形特征. 工程力學, 2009, 26(增刊1): 72 [23] Fan Y F, Zhou J, Feng X. Fractals in failure of corroded reinforced concrete members. Eng Mech, 2002, 19(5): 123 doi: 10.3969/j.issn.1000-4750.2002.05.023范穎芳, 周晶, 馮新. 受腐蝕鋼筋混凝土構件破壞過程的分形行為. 工程力學, 2002, 19(5):123 doi: 10.3969/j.issn.1000-4750.2002.05.023 [24] Luan H Y, Fan Y F, Wang D W, et al. Study on the flexural behavior of the CFRP-reinforced concrete beam with fractal theory. Eng Mech, 2015, 32(4): 160欒海洋, 范穎芳, 王大為, 等. 基于分形理論的CFRP布增強混凝土梁抗彎性能研究. 工程力學, 2015, 32(4):160 [25] Ministry of Housing and Urban-Rural Development of the People’s Republic of China. GB50081—2019 Standard for Test Methods of Concrete Physical and Mechanical Properties. Beijing: China Architecture & Building Press, 2019中華人民共和國住房和城鄉建設部. GB/T50081—2019混凝土物理力學性能試驗方法標準. 北京: 中國建筑工業出版社, 2019 [26] Ministry of Housing and Urban-Rural Development of the People’s Republic of China. GB/T50152—2012 Standard for Test Method of Concrete Structures. Beijing: China Architecture & Building Press, 2012中華人民共和國住房和城鄉建設部. GB/T50152—2012混凝土結構試驗方法標準. 北京: 中國建筑工業出版社, 2012 [27] Mandelbrot B B. The Fractal Geometry of Nature. San Francisco: W. H. Freeman and Company, 1982 [28] Liu J H, Zhao L, Ji H G. Influence of initial damage on degradation and deterioration of concrete under sulfate attack. Chin J Eng, 2017, 39(8): 1278劉娟紅, 趙力, 紀洪廣. 初始損傷對混凝土硫酸鹽腐蝕劣化性能的影響. 工程科學學報, 2017, 39(8):1278 [29] Wen Y, Xu H, Han D M. Study on the effect of lithium slag powders upon the sulfate corrosion resistance of cement material. Concrete, 2010(12): 90 doi: 10.3969/j.issn.1002-3550.2010.12.029溫勇, 徐虎, 韓東明. 鋰渣粉對水泥基材料抗硫酸鹽侵蝕性能的影響. 混凝土, 2010(12):90 doi: 10.3969/j.issn.1002-3550.2010.12.029 -