Catastrophic temperature of oxidation-spontaneous-combustion for bituminous coal under uniaxial stress
-
摘要: 為探究不同埋藏深度裂隙煤體氧化?自燃過程在單軸應力作用下的影響規律,本文通過荷載加壓煤自燃特性實驗平臺,采用新疆硫磺溝礦區煙煤煤樣,開展了施加單軸應力在0~8 MPa下的貧氧環境程序升溫試驗。根據加壓試驗中煙煤產生氣體隨溫度的變化關系,計算了煙煤在單軸應力下升溫過程表觀活化能和耗氧速率。結合煤自燃氧化動力學和熱解參數,闡述了單軸應力下煤體由緩慢氧化到快速氧化的非線性發展過程,并基于突變理論解算出試驗條件下煙煤氧化?燃燒過程的突變溫度和臨界溫度,確定出4個特征參數:突變溫度
$ {T}_{\mathrm{C}\mathrm{O}} $ (CO表征)和$ {T}_{\mathrm{H}\mathrm{Y}} $ (耗氧速率表征),臨界溫度$ {T}_{\mathrm{C}\mathrm{O}}^{'} $ (CO表征)和$ {T}_{\mathrm{H}\mathrm{Y}}^{'} $ (耗氧速率表征),并分析了不同特征參數隨單軸應力的變化規律。結果表明:熱解氣體濃度、表觀活化能和耗氧速率隨單軸應力增大呈先增大后減小再增大的三次函數規律(其中1.8和5.5 MPa時為臨界軸壓),1.8 MPa時表觀活化能和各項特征參數數值最低,煤氧反應速率最快,耗氧速率最高;單軸應力為5.5 MPa時耗氧速率最大,煤體新生裂隙最多;單軸應力對$ {T}_{\mathrm{C}\mathrm{O}} $ 特征參數影響最大,煤自燃緩慢過渡到快速氧化的溫度指標,由CO濃度表征的突變溫度$ {T}_{\mathrm{C}\mathrm{O}} $ 表征最為準確。該研究結果對于礦井不同埋深煤自燃預警和防控具有重要理論指導意義。Abstract: To explore the influence of the oxidation and spontaneous combustion process of fractured coal at different burial depths under uniaxial stress, the spontaneous combustion characteristics of coal under loading was studied within the testing device of coal spontaneous combustion and loading. Bituminous coal from the Liuhuanggou mining area in Xinjiang was selected and oxidized in the oxygen-lean environment loaded at the range of 0–8 MPa. Based on the relationship between the gas generated in the experiment and the temperature, we calculated the apparent activation energy and oxygen consumption rate of coal samples under uniaxial stress. We combined the oxidation kinetics and pyrolysis parameters of spontaneous coal combustion to describe the nonlinear development of coal from slow to rapid oxidation under uniaxial stress. Based on catastrophe theory, the catastrophic temperature and critical temperature of bituminous coal oxidation-combustion process under test conditions were calculated, and four characteristic parameters were determined: catastrophic temperature$ {T}_{\mathrm{C}\mathrm{O}} $ (characterization of CO) and$ {T}_{\mathrm{H}\mathrm{Y}} $ (characterization of oxygen consumption rate), and critical temperature$ {T}_{\mathrm{C}\mathrm{O}}^{'} $ (characterization of CO) and$ {T}_{\mathrm{H}\mathrm{Y}}^{'} $ (characterization of oxygen consumption rate), and analyzed the variation of different characteristic parameters with uniaxial stress. The analysis results show that the pyrolysis gas concentration, apparent activation energy, and oxygen consumption rate follow a cubic function law that first increases, then decreases, and then increases with increases in the uniaxial stress (the critical axial pressures at 1.8 and 5.5 MPa). At 1.8 MPa, the apparent activation energy and various parameter values are lowest, the oxygen reaction rate of coal is fastest, and the oxygen consumption rate is the highest. When the uniaxial stress is 5.5 MPa, the oxygen consumption rate is the highest, the greatest number of new cracks is created, and the characteristic$ {T}_{\mathrm{C}\mathrm{O}} $ parameters have the greatest impact. The temperature index of spontaneous coal combustion slowly transitions to rapid oxidation, and the catastrophic temperature$ {T}_{\mathrm{C}\mathrm{O}} $ characterized by the CO concentration is the most accurate. The research results have important theoretical guiding significance for the early warning and prevention and control of spontaneous combustion of coal at different buried depths. -
表 1 實驗煤樣的工業分析與元素分析(質量分數)
Table 1. Proximate and ultimate analyses for the experimental coal
% Proximate analysis Ultimate analysis Mad Aad Vdaf FCad Cdaf Hdaf Ndaf 6.43 15.71 41.51 36.35 70.86 5.44 0.69 表 2 不同單軸應力下煤的孔隙率
Table 2. Porosity of coal under different levels of uniaxial stress
0 MPa 2 MPa 4 MPa 6 MPa 8 MPa 0.476 0.447 0.400 0.392 0.350 表 3 不同單軸應力下的突變溫度
Table 3. Catastrophic temperature under different levels of uniaxial stress
Uniaxial stresses /MPa TCO/℃ THY/℃ 0 83.3 99.1 2 92.1 121.0 4 90.0 117.3 6 85.1 92.0 8 131.1 137.0 表 4 不同單軸應力下煤樣臨界溫度
Table 4. Critical temperature of coal sample under different levels of uniaxial stresses
Uniaxial stresses /MPa $ {T}_{\mathrm{C}\mathrm{O}}^{'} $/℃ $ {T}_{\mathrm{H}\mathrm{Y}}^{'} $/℃ 0 70.0 60.0 2 90.0 70.0 4 80.0 70.0 6 70.0 60.0 8 128.2 128.2 表 5 單軸應力與特征參數的灰色關聯度
Table 5. Grey relational grades of characteristic and axial compression parameters
Uniaxial stresses /MPa $ {T}_{\mathrm{C}\mathrm{O}} $ $ {T}_{\mathrm{H}\mathrm{Y}} $ $ {T}_{\mathrm{C}\mathrm{O}}^{'} $ $ {T}_{\mathrm{H}\mathrm{Y}}^{'} $ Average value 2 0.86 0.67 0.77 0.54 0.71 4 0.81 0.84 0.83 0.59 0.77 6 0.77 0.60 0.66 0.52 0.64 8 0.95 0.89 0.79 0.62 0.82 www.77susu.com -
參考文獻
[1] Xu Y H, Xu M G, Xu J C. Discussion on several problems in indication gas prediction of coal spontaneous combustion. Min Saf Environ Prot, 2005, 32(1): 16 doi: 10.3969/j.issn.1008-4495.2005.01.007許延輝, 許滿貴, 徐精彩. 煤自燃火災指標氣體預測預報的幾個關鍵問題探討. 礦業安全與環保, 2005, 32(1):16 doi: 10.3969/j.issn.1008-4495.2005.01.007 [2] Zhao H G, Zhang D M, Liu C, et al. Mechanical characteristics and permeability evolution rule of coal under loading-unloading conditions. Chin J Eng, 2016, 38(12): 1674趙宏剛, 張東明, 劉超, 等. 加卸載下原煤力學特性及滲透演化規律. 工程科學學報, 2016, 38(12):1674 [3] Lou Q, He X Q, Song D Z, et al. Time-frequency characteristics of acoustic-electric signals induced by coal fracture under uniaxial compression based on full-waveform. Chin J Eng, 2019, 41(7): 874婁全, 何學秋, 宋大釗, 等. 基于全波形的煤樣單軸壓縮破壞聲電時頻特征. 工程科學學報, 2019, 41(7):874 [4] Yu Y J, Zhang H, Zhang C H, et al. Effects of temperature and stress on permeability of standard coal briquette specimen. J China Coal Soc, 2013, 38(6): 936于永江, 張華, 張春會, 等. 溫度及應力對成型煤樣滲透性的影響. 煤炭學報, 2013, 38(6):936 [5] Zhang Z P, Gao M Z, Zhang Z T, et al. Research on permeability characteristics of raw coal in complete stress-strain process under different gas pressure. J China Coal Soc, 2015, 40(4): 836張朝鵬, 高明忠, 張澤天, 等. 不同瓦斯壓力原煤全應力應變過程中滲透特性研究. 煤炭學報, 2015, 40(4):836 [6] Zhou F B, Shao H, Li J H, et al. Experimental research on combustion product formation during coal spontaneous combustion under reduced oxygen concentrations. J China Univ Min Technol, 2010, 39(6): 808周福寶, 邵和, 李金海, 等. 低O2含量條件下煤自燃產物生成規律的實驗研究. 中國礦業大學學報, 2010, 39(6):808 [7] Wen H, Zhao X T, Wang W F, et al. Analysis on characteristics of indicator gases of spontaneous combustion of different coals. Coal Convers, 2020, 43(1): 16文虎, 趙向濤, 王偉峰, 等. 不同煤體自燃指標性氣體函數模型特征分析. 煤炭轉化, 2020, 43(1):16 [8] Zhu J G, Dai G L, Tang M Y, et al. Experimental study on spontaneous combustion prediction index gas of water immersed long flame coal. Coal Sci Technol, 2020, 48(5): 89朱建國, 戴廣龍, 唐明云, 等. 水浸長焰煤自燃預測預報指標氣體試驗研究. 煤炭科學技術, 2020, 48(5):89 [9] Tang H, Guo J, Liu Y, et al. Experimental study on index optimization of coal spontaneous combustion prediction under high temperature. Saf Coal Mines, 2018, 49(6): 11唐洪, 郭軍, 劉蔭, 等. 高地溫條件下的煤自燃預報指標優選實驗研究. 煤礦安全, 2018, 49(6):11 [10] Zhong X X, Wang D M, Yin X D. Test method of critical temperature of coal spontaneous combustion based on the temperature programmed experiment. J China Coal Soc, 2010, 35(Suppl 1): 128仲曉星, 王德明, 尹曉丹. 基于程序升溫的煤自燃臨界溫度測試方法. 煤炭學報, 2010, 35(增刊1): 128 [11] Kondratiev A, Ilyushechkin A. Flow behaviour of crystallising coal ash slags: Shear viscosity, non-Newtonian flow and temperature of critical viscosity. Fuel, 2018, 224: 783 doi: 10.1016/j.fuel.2018.03.031 [12] Gbadamosi A R, Onifade M, Genc B, et al. Analysis of spontaneous combustion liability indices and coal recording standards/basis. Int J Min Sci Technol, 2020, 30(5): 723 doi: 10.1016/j.ijmst.2020.03.016 [13] Jiao X M, Wang D M, Zhong X X, et al. The analysis of influencing factors on coal spontaneous combustion calculate critical temperature based on CO concentration. Saf Coal Mines, 2012, 43(3): 11焦新明, 王德明, 仲曉星, 等. 基于CO濃度求解煤自燃臨界溫度的影響因素分析. 煤礦安全, 2012, 43(3):11 [14] Zhang H M. Experimental on gaseous seepage properties of sandstone in complete stress-strain process. J China Coal Soc, 2009, 34(8): 1063 doi: 10.3321/j.issn:0253-9993.2009.08.011張宏敏. 砂巖全應力?應變過程氣體滲透特性實驗. 煤炭學報, 2009, 34(8):1063 doi: 10.3321/j.issn:0253-9993.2009.08.011 [15] Xu Y L, Zuo N, Liang P P, et al. Study on influence of uniaxial stress on spontaneous combustion characteristic parameters and thermal conductivity of coal. J Saf Sci Technol, 2018, 14(4): 32徐永亮, 左寧, 梁浦浦, 等. 單軸應力對煤自燃特性參數和導熱系數的影響研究. 中國安全生產科學技術, 2018, 14(4):32 [16] Song Z Y. Thermogravimetric and Numerical Investigations on Couplings of Chemical Reaction, Hydraulic Field and Thermal Field of Coal Fires [Dissertation]. Beijing: China University of Mining and Technology, 2015宋澤陽. 煤火氧化燃燒反應-流場-溫度場耦合TGA實驗與數值模擬 [學位論文]. 北京: 中國礦業大學(北京), 2015 [17] Xu Y L, Wang L Y, Song Z P, et al. Characteristics and critical parameters of coal spontaneous combustion at low temperature stage based on CPT method. J China Coal Soc, 2017, 42(4): 935徐永亮, 王蘭云, 宋志鵬, 等. 基于交叉點法的煤自燃低溫氧化階段特性和關鍵參數. 煤炭學報, 2017, 42(4):935 [18] Li Z H, Qi F, Du C S, et al. Measurement of dynamic parameters of coal oxidation at low temperature based on oxygen consumption. J Min Saf Eng, 2007, 24(2): 137 doi: 10.3969/j.issn.1673-3363.2007.02.003李增華, 齊峰, 杜長勝, 等. 基于吸氧量的煤低溫氧化動力學參數測定. 采礦與安全工程學報, 2007, 24(2):137 doi: 10.3969/j.issn.1673-3363.2007.02.003 [19] Kudynska J, Buckmaster H A. Low-temperature oxidation kinetics of high-volatile bituminous coal studied by dynamic in situ 9 GHz c.w.e.p.r. spectroscopy. Fuel, 1996, 75(7): 872 doi: 10.1016/0016-2361(96)00014-2 [20] Copard Y, Disna J R, Becq-Giraudon J F, et al. Erroneous coal maturity assessment caused by low temperature oxidation. Int J Coal Geol, 2004, 58(3): 171 doi: 10.1016/j.coal.2003.10.007 [21] Zhu H Q, Wang H Y, Shen J. et al. Experiment study on oxygen concentration affected to oxygen consumption rate of loose coal. Coal Eng, 2013, 45(8): 110朱紅青, 王海燕, 沈靜, 等. 氧濃度對松散煤耗氧速率影響的實驗研究. 煤炭工程, 2013, 45(8):110 [22] Onifade M, Genc B. A review of research on spontaneous combustion of coal. Int J Min Sci Technol, 2020, 30(3): 303 doi: 10.1016/j.ijmst.2020.03.001 [23] Liu W, Qin Y P, Qiao T, et al. Experimental demonstration on calculation of oxygen consumption rate and CO generation rate in coal spomtaneous combustion. J China Univ Min Technol, 2016, 45(6): 1141劉偉, 秦躍平, 喬珽, 等. 煤耗氧速率與CO生成速率的計算及實驗論證. 中國礦業大學學報, 2016, 45(6):1141 [24] Wang D M, Xin H H, Qi X Y, et al. Mechanism and relationships of elementary reactions in spontaneous combustion of coal: The coal oxidation kinetics theory and application. J China Coal Soc, 2014, 39(8): 1667王德明, 辛海會, 戚緒堯, 等. 煤自燃中的各種基元反應及相互關系: 煤氧化動力學理論及應用. 煤炭學報, 2014, 39(8):1667 [25] Guo D Y, Li J N, Wang Y K, et al. Early-warning model of coal and gas outburst based on the stick-slip and catastrophe theory. J Univ Sci Technol Beijing, 2013, 35(11): 1407郭德勇, 李佳乃, 王彥凱, 等. 基于黏滑失穩與突變理論的煤與瓦斯突出預警模型. 北京科技大學學報, 2013, 35(11):1407 [26] Zhang Y T, Li Y Q, Deng J, et al. Study on catastrophe characteristics of coal spontaneous combustion. China Saf Sci J, 2015, 25(1): 78張玉濤, 李亞清, 鄧軍, 等. 煤炭自燃災變過程突變特性研究. 中國安全科學學報, 2015, 25(1):78 [27] Zhang H Y, Geng Z. Novel interpretation for Levenberg-Marquardt algorithm. Comput Eng Appl, 2009, 45(19): 5 doi: 10.3778/j.issn.1002-8331.2009.19.002張鴻燕, 耿征. Levenberg-Marquardt算法的一種新解釋. 計算機工程與應用, 2009, 45(19):5 doi: 10.3778/j.issn.1002-8331.2009.19.002 [28] Sun G D, Guan X, Yi X, et al. Grey relational analysis between hesitant fuzzy sets with applications to pattern recognition. Expert Syst Appl, 2018, 92: 521 doi: 10.1016/j.eswa.2017.09.048 -