Transfer behaviors and evolution of surface micromorphology of non-smooth strip in temper rolling process with rough roller
-
摘要: 針對平整軋制過程不同用途帶鋼對表面微觀形貌的特殊要求,在批量跟蹤電火花毛化軋輥、磨削軋輥和冷軋后帶鋼表面微觀形貌的基礎上,建立工作輥與帶鋼都可考慮真實表面粗糙峰的帶鋼表面微觀形貌軋制轉印生成模型,采用工業實驗驗證了仿真模型的準確性,并據此模型分析軋制前帶鋼已經具有表面粗糙度分別大于、等于、小于軋輥表面粗糙度時,帶鋼表面微觀形貌的軋制轉印行為與遺傳演變規律。提出了負轉印和轉印飽和的概念,定義了兩種極限軋制轉印狀態的描述指標— —負轉印最大和轉印飽和,研究發現當帶鋼表面粗糙度小于或等于軋輥表面粗糙度時,存在負轉印最大點和轉印飽和點;當帶鋼表面粗糙度大于軋輥表面粗糙度時,負轉印最大點和轉印飽和點重合。在此基礎上,采用負轉印最大點與轉印飽和點對應的臨界板寬軋制力,描述帶鋼表面微觀形貌的遺傳及演變規律,并系統仿真分析帶鋼屈服強度、帶鋼軋前表面粗糙度、軋輥表面粗糙度等工藝條件參數對于負轉印最大點與轉印飽和點對應的臨界單位板寬軋制力的影響規律,發現隨著帶鋼屈服強度增大和軋輥表面粗糙度增加,該臨界單位板寬軋制力均增大;隨著帶鋼表面粗糙度增大,負轉印最大點對應的臨界單位板寬軋制力增大,但轉印飽和點對應的臨界單位板寬軋制力卻減小。Abstract: To meet special requirements and respond to control problems of surface micromorphology of different strips in skin rolling process, a rolling transfer generation model of the surface micromorphology contact between work roll and actual rough surface of strip was established on the basis of batch tracing the surface micromorphology of electric discharge textured roll, grinding roll and cold rolled strip. The inheritance and evolution of surface micromorphology of the strip was analyzed based on the generation model and the accuracy of the generation model was verified by industrial experiments. The concepts of negative transfer and transfer saturation were proposed, and the descriptive indicators for two extreme rolling transfer status (the maximum negative transfer and transfer saturation) were defined. When strip surface roughness is equal to or less than that of roll, a maximum negative transfer point and transfer saturation point exist, while when strip surface roughness is greater than that of roll, the maximum negative transfer point is in superposition with the transfer saturation point. Under the above precondition, through the rolling force of critical strip width, which corresponds to the maximum negative transfer point and transfer saturation point, the inheritance and evolution of surface micromorphology of the strip were characterized. The effect of strip yield strength, strip surface roughness, and roll surface roughness on the rolling force of critical strip width corresponding to maximum negative transfer point and transfer saturation point were also analyzed. Results show that with the increase of strip yield strength and roll surface roughness, the rolling force of critical strip width corresponding to maximum negative transfer point and transfer saturation point increases. With the increase of strip surface roughness, the rolling force of critical strip width corresponding to maximum negative transfer point increases, and the rolling force of critical strip width corresponding to transfer saturation point decreases.
-
圖 8 工作輥Ra > 帶鋼Ra時不同影響因素對負轉印最大點對應臨界單位板寬軋制力的影響。(a)工作輥表面粗糙度;(b)入口帶鋼表面粗糙度
Figure 8. Influence of different factors on the critical rolling force per unit width at the maximum point of negative transfer when work roll Ra > strip Ra: (a) surface roughness of the work roll; (b) surface roughness of inlet strip
圖 10 工作輥Ra > 帶鋼Ra時不同影響因素對軋制轉印飽和點對應臨界單位板寬軋制力的影響。(a)工作輥表面粗糙度;(b)入口帶鋼表面粗糙度
Figure 10. Influence of different factors on the critical rolling force per unit width at the saturation point of rolling transfer when work roll Ra > strip Ra: (a) surface roughness of the work roll; (b) surface roughness of inlet strip
表 1 兩種典型帶鋼表面微觀形貌軋制與板寬方向二維輪廓粗糙度參數
Table 1. Roughness parameters of two-dimensional profile along the width and rolling direction of two kinds of typical strip surface microtopography
Roughness parameters Coordinatesaxis Electrical discharge machining Grinding machine 1 2 3 4 Mean value 1 2 3 4 Mean value Ra/μm X-axis 1.18 1.02 1.05 0.99 1.06 0.58 0.57 0.49 0.52 0.54 Y-axis 1.21 1.04 1.01 1.08 1.08 0.32 0.22 0.34 0.20 0.27 Rz/μm X-axis 5.78 5.82 5.89 6.43 5.98 4.23 4.37 4.82 5.10 4.63 Y-axis 6.21 5.97 6.05 6.20 6.11 2.01 2.34 2.81 2.45 2.40 Ry/μm X-axis 6.09 5.98 6.05 6.45 6.14 4.35 4.43 4.87 5.14 4.70 Y-axis 6.30 6.28 6.12 6.39 6.27 2.10 2.44 3.01 2.76 2.58 Pc/cm?1 X-axis 60 45 56 52 53 97 82 87 80 87 Y-axis 55 55 43 50 51 107 95 117 90 102 表 2 工業實驗工況表
Table 2. Industrial experiment condition
Working
conditionIncoming strip
Ra/μmWork roll
Ra/μmRolling force/
(kN?mm?1)1 0.63 2.45 2.0 2 0.63 2.45 2.5 3 0.67 3.03 2.0 4 0.67 3.03 2.5 5 0.67 3.03 3.0 表 3 模型計算帶鋼表面粗糙度參數與實驗實測值對比
Table 3. Comparison between model calculation parameters of strip surface roughness and experimental values
Working condition Ra/μm Rz/μm Ry/μm Pc/cm?1 M C A R/% M C A R/% M C A R/% M C A R/% 1 1.034 1.093 0.059 5.71 4.244 4.464 0.220 5.18 4.251 4.501 0.250 5.88 68 70 2 2.94 2 1.203 1.255 0.052 4.32 5.973 5.826 0.147 2.46 5.997 5.844 0.153 2.55 70 70 0 0 3 1.155 1.135 0.020 1.73 5.322 5.128 0.194 3.65 5.394 5.202 0.192 3.56 62 60 2 3.23 4 1.262 1.284 0.022 1.74 5.748 5.889 0.141 2.45 5.852 5.922 0.07 1.20 66 60 6 9.09 5 1.451 1.440 0.011 0.76 7.592 7.846 0.254 3.35 7.607 7.861 0.254 3.34 65 60 5 7.69 Note:M—measured value;C—calculated value;A—absolute error;R—relative error. 表 4 帶鋼表面粗糙度遺傳和演變規律計算工況
Table 4. Calculation condition of genetic and evolution rule of strip surface roughness
Working condition Strip Ra/μm Work roll Ra/μm Work roll Ra > Strip Ra 1 3.5 Work roll Ra ≈ Strip Ra 1 1 Work roll Ra < Strip Ra 1 0.5 www.77susu.com -
參考文獻
[1] Zhang Q D, Zhang B Y, Li R, et al. Advances in theory and technology for microscopic surface quality control of steel strip. J Mech Eng, 2016, 52(10): 32 doi: 10.3901/JME.2016.10.032張清東, 張勃洋, 李瑞, 等. 鋼板微觀表面質量控制理論與技術研究進展. 機械工程學報, 2016, 52(10):32 doi: 10.3901/JME.2016.10.032 [2] Zhang Q D, Zhang B Y, Li R, et al. Control of surface glossiness during temper rolling aimed at improving visual aesthetics of tinplate. J Mech Eng, 2016, 52(14): 48 doi: 10.3901/JME.2016.14.048張清東, 張勃洋, 李瑞, 等. 鍍錫鋼板表面光澤度軋制轉印控制. 機械工程學報, 2016, 52(14):48 doi: 10.3901/JME.2016.14.048 [3] Xu D, Li H B, Zhang J, et al. Surface topography multi-parameter analysis of textured rolls in cold temper mill. J Cent South Univ Sci Technol, 2014, 45(3): 734徐冬, 李洪波, 張杰, 等. 冷軋平整機毛化輥表面形貌特征多參數對比分析. 中南大學學報(自然科學版), 2014, 45(3):734 [4] Wang Q Y, Zhu Y, Guo S, et al. Research on mixed lubrication characteristics of strip mill based on surface roughness features of rolling interface. J Cent South Univ Sci Technol, 2019, 50(1): 83 doi: 10.11817/j.issn.1672-7207.2019.01.012王橋醫, 朱媛, 過山, 等. 基于軋制界面表面粗糙度特征的板帶軋機混合潤滑特性研究. 中南大學學報(自然科學版), 2019, 50(1):83 doi: 10.11817/j.issn.1672-7207.2019.01.012 [5] Sun R S, Wang J, Liu Y M, et al. The control measure of the surface topography on the cold rolling strip//Proceedings of 11th China Iron & Steel Annual Meeting. Beijing, 2017: 1孫榮生, 王靜, 劉英明, 等. 冷連軋機組軋后鋼板表面形貌的控制//第十一屆中國鋼鐵年會論文集. 北京, 2017: 1 [6] You Y, Li H B, Xia C Y, et al. Experimental and mathematical model study of attenuation process of the surface roughness of textured work rolls during cold rolling. J Mech Eng, 2018, 54(12): 173 doi: 10.3901/JME.2018.12.173尤媛, 李洪波, 夏春雨, 等. 冷軋毛化工作輥表面粗糙度衰減過程的試驗與數學模型研究. 機械工程學報, 2018, 54(12):173 doi: 10.3901/JME.2018.12.173 [7] Li R, Zhang Q D, Zhang X F, et al. Control method for steel strip roughness in two-stand temper mill rolling. Chin J Mech Eng, 2015, 28(3): 573 doi: 10.3901/CJME.2015.0310.027 [8] Zhang Q D, Zhang B Y, Ma L, et al. Surface roughness rolling-transfer regularity and prediction model of high strength steel strips. Chin J Eng, 2016, 38(1): 118張清東, 張勃洋, 馬磊, 等. 高強度帶鋼表面粗糙度軋制轉印規律及預測模型. 工程科學學報, 2016, 38(1):118 [9] Bai Z H, Wang J F. Control technique for surface roughness of strip in cold tandem rolling. Iron Steel, 2006, 41(11): 46 doi: 10.3321/j.issn:0449-749X.2006.11.013白振華, 王駿飛. 冷連軋機成品板面粗糙度控制技術的研究. 鋼鐵, 2006, 41(11):46 doi: 10.3321/j.issn:0449-749X.2006.11.013 [10] Plouraboué F, Boehm M. Multiscale roughness transfer in cold metal rolling. Tribol Int, 1999, 32(1): 45 doi: 10.1016/S0301-679X(99)00013-4 [11] Dick K, Lenard J G. The effect of roll roughness and lubricant viscosity on the loads on the mill during cold rolling of steel strips. J Mater Process Technol, 2005, 168(1): 16 doi: 10.1016/j.jmatprotec.2004.09.091 [12] Jiang Z Y, Tieu A K. Contact mechanism and work roll wear in cold rolling thin strip. Wear, 2007, 263(7-12): 1447 doi: 10.1016/j.wear.2006.12.068 [13] Chen J S, Li C S, Cao Y. Effects of roll roughness on surface and process parameters for stainless-steel strip. J Mech Eng, 2013, 49(4): 30 doi: 10.3901/JME.2013.04.030陳金山, 李長生, 曹勇. 軋輥粗糙度對不銹鋼板帶表面和工藝參數的影響. 機械工程學報, 2013, 49(4):30 doi: 10.3901/JME.2013.04.030 [14] Xu D, Yang Q, Wang X C, et al. Influence of lubrication film thickness on transfer of surface topography at cold rolling interface. J Harbin Inst Technol, 2017, 49(1): 160 doi: 10.11918/j.issn.0367-6234.2017.01.024徐冬, 楊荃, 王曉晨, 等. 冷軋界面油膜厚度對表面形貌轉印過程的影響. 哈爾濱工業大學學報, 2017, 49(1):160 doi: 10.11918/j.issn.0367-6234.2017.01.024 [15] Gao X C. Study on control technology of cold rolled strip roughness. Bengang Technol, 2013(1): 31高興昌. 冷軋帶鋼表面粗糙度的影響因素與復制率研究. 本鋼技術, 2013(1):31 [16] Zhang J K, Zhou X M, Jiang J. Analysis of the rolling transfer fabrication of cold rolled steel strip surface micro-topography. Met World, 2018(3): 34 doi: 10.3969/j.issn.1000-6826.2018.03.09張佳康, 周曉敏, 蔣靖. 冷軋帶鋼表面微觀形貌軋制轉印規律分析. 金屬世界, 2018(3):34 doi: 10.3969/j.issn.1000-6826.2018.03.09 [17] Jing Y A, Zang X M, Shang Q Y, et al. Evolution of surface morphologies of piece in process of cold rolling. Steel Roll, 2015, 32(1): 31井玉安, 臧曉明, 商秋月, 等. 酸洗冷軋過程中軋件表面形貌演變規律研究. 軋鋼, 2015, 32(1):31 [18] Shi J Y, McElwain D L S, Domanti S A. Some surface profiles of a strip after plane-strain indentation by rigid bodies with serrated surfaces. J Mater Process Technol, 2002, 124(1-2): 227 doi: 10.1016/S0924-0136(02)00177-2 [19] Wu C H, Zhang L C, Qu P L, et al. A new method for predicting the three-dimensional surface texture transfer in the skin pass rolling of metal strips. Wear, 2019, 426-427: 1246 doi: 10.1016/j.wear.2018.12.020 [20] Giarola A M, Pereira P H R, Stemler P A, et al. Strain heterogeneities in the rolling direction of steel sheets submitted to the skin pass: A finite element analysis. J Mater Process Technol, 2015, 216: 234 doi: 10.1016/j.jmatprotec.2014.09.015 [21] Zhang X F, Li R, Zhang B Y, et al. Model for the generation of surface topography in steel strip temper rolling. J Mech Eng, 2013, 49(14): 38 doi: 10.3901/JME.2013.14.038張曉峰, 李瑞, 張勃洋, 等. 平整軋制過程中帶鋼表面形貌的生成模型. 機械工程學報, 2013, 49(14):38 doi: 10.3901/JME.2013.14.038 [22] Mishra M, Egberts P, Bennewitz R, et al. Friction model for single-asperity elastic-plastic contacts. Phys Rev B, 2012, 86(4): 045452 doi: 10.1103/PhysRevB.86.045452 [23] Poulios K, Klit P. Implementation and applications of a finite-element model for the contact between rough surfaces. Wear, 2013, 303(1-2): 1 doi: 10.1016/j.wear.2013.02.024 [24] Mulvihill D M, Kartal M E, Nowell D, et al. An elastic–plastic asperity interaction model for sliding friction. Tribol Int, 2011, 44(12): 1679 doi: 10.1016/j.triboint.2011.06.018 [25] Le H R, Sutcliffe M P F. Finite element modelling of the evolution of surface pits in metal forming processes. J Mater Process Technol, 2004, 145(3): 391 doi: 10.1016/j.jmatprotec.2003.09.007 [26] Xu D, Zhang J, Li H B, et al. Influence factors and control strategy of cold rolled strip surface roughness. J Cent South Univ Sci Technol, 2017, 48(1): 112 doi: 10.11817/j.issn.1672-7207.2017.01.016徐冬, 張杰, 李洪波, 等. 冷軋帶鋼表面粗糙度影響因素及控制策略. 中南大學學報(自然科學版), 2017, 48(1):112 doi: 10.11817/j.issn.1672-7207.2017.01.016 -