<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

古磚塔子結構壓剪復合受力性能分析

盧俊龍 范金鑫 王振山 贠作義

盧俊龍, 范金鑫, 王振山, 贠作義. 古磚塔子結構壓剪復合受力性能分析[J]. 工程科學學報, 2022, 44(2): 277-288. doi: 10.13374/j.issn2095-9389.2020.08.12.004
引用本文: 盧俊龍, 范金鑫, 王振山, 贠作義. 古磚塔子結構壓剪復合受力性能分析[J]. 工程科學學報, 2022, 44(2): 277-288. doi: 10.13374/j.issn2095-9389.2020.08.12.004
LU Jun-long, FAN Jin-xin, WANG Zhen-shan, YUN Zuo-yi. Analysis of the composite mechanical properties of the substructure of a masonry pagoda[J]. Chinese Journal of Engineering, 2022, 44(2): 277-288. doi: 10.13374/j.issn2095-9389.2020.08.12.004
Citation: LU Jun-long, FAN Jin-xin, WANG Zhen-shan, YUN Zuo-yi. Analysis of the composite mechanical properties of the substructure of a masonry pagoda[J]. Chinese Journal of Engineering, 2022, 44(2): 277-288. doi: 10.13374/j.issn2095-9389.2020.08.12.004

古磚塔子結構壓剪復合受力性能分析

doi: 10.13374/j.issn2095-9389.2020.08.12.004
基金項目: 國家自然科學基金資助項目(51778527)
詳細信息
    通訊作者:

    E-mail: lujunlong@sohu.com

  • 中圖分類號: TU317;TU362

Analysis of the composite mechanical properties of the substructure of a masonry pagoda

More Information
  • 摘要: 為研究古塔子結構的受力性能,設計制作了3件不同樓層的子結構縮尺模型試件,進行低周反復加載試驗,觀察試件的開裂、變形及破壞現象;建立數值模型進行計算,得到了試驗荷載作用下各試件的等效塑性應變、荷載?位移曲線,將計算結果與試驗結果進行對比,分析豎向壓應力對古塔砌體抗震性能的影響。結果表明,特征荷載的計算值相對試驗值的誤差均小于21%,等效塑性應變的分布與試件開裂破壞區域一致;當豎向壓力保持恒定時,隨著水平荷載的增大,塔體沿砌筑縫逐漸開裂破壞,裂縫寬度亦隨之增大,在塔體洞口周圍的破壞更為明顯,且試件殘余變形增大;隨著壓剪比的增大,古塔砌體開裂破壞的范圍減小,抗剪承載力、剛度以及耗能能力均有所提高,但延性和變形能力略有降低。研究結果為磚石古塔建筑結構損傷及抗震能力評定提供參考。

     

  • 圖  1  古塔原型及其子結構模型。(a)興教寺玄奘塔;(b)子結構模型

    Figure  1.  Prototype of ancient pagoda and its substructure model: (a) Xuanzang Pagoda in Xingjiao Temple; (b) substructure model

    圖  2  子結構試件尺寸(單位:m)。(a)頂部結構;(b)中部結構;(c)底部結構

    Figure  2.  Dimensions of substructure specimens (Unit: m): (a) top structure; (b) central structure; (c) bottom structure

    圖  3  加載方案

    Figure  3.  Loading test scheme

    圖  4  測點布置示意圖。(a)南立面;(b)東立面;(c)北立面

    Figure  4.  Loading test scheme: (a) south facade; (b) east facade; (c) west facade

    圖  5  試件局部破壞。(a)加載初期開裂;(b)北立面X型裂縫;(c)磚塊脫落;(d)交叉貫通裂縫;(e)X型貫通裂縫;(f)南立面開裂錯層

    Figure  5.  Local failure of substructure specimens: (a) cracking at initial loading stage; (b) X-type crack in north facade; (c) brick fell off; (d) cross through fracture; (e) X-type through fracture; (f) cracking and staggered floor of south facade

    圖  6  子結構試件壓剪比曲線。(a)T1試件;(b)T2試件;(c)T3試件

    Figure  6.  Compression-shear ratio curve of substructure specimen: (a) T1 specimen; (b) T2 specimen; (c) T3 specimen

    圖  7  子結構試件滯回曲線。(a)T1試件;(b)T2試件;(c)T3試件

    Figure  7.  Hysteresis curve of substructure specimen: (a) T1 specimen; (b) T2 specimen; (c) T3 specimen

    圖  8  試件骨架曲線

    Figure  8.  Specimen skeleton curves

    圖  9  剛度退化曲線

    Figure  9.  Stiffness degradation curves

    圖  10  有限元模型

    Figure  10.  Finite element model

    圖  11  應力?應變曲線。(a)灰漿試塊;(b)磚砌體試塊

    Figure  11.  Stress strain curve: (a) mortar test block; (b) brick masonry test block

    圖  12  子結構試件模擬骨架曲線。(a)T1試件;(b)T2試件;(c)T3試件

    Figure  12.  Simulation skeleton curve of substructure specimen: (a) T1 specimen; (b) T2 specimen; (c) T3 specimen

    圖  13  極限位移下子結構等效塑性應變云圖。(a)T1,10 kN,11 mm;(b)T1,20 kN,12 mm;(c)T2,10 kN,13 mm;(d)T2,20 kN,20 mm;(e)T3,20 kN,13 mm;(f)T3,30 kN,18 mm

    Figure  13.  Equivalent plastic strain nephogram of substructure at ultimate displacement: (a) T1,10 kN,11 mm; (b) T1,20 kN,12 mm; (c) T2 ,10 kN,13 mm; (d) T2,20 kN,20 mm; (e) T3,20 kN,13 mm; (f) T3,30 kN,18 mm

    圖  14  荷載?位移曲線對比。(a)T1, 10 kN;(b)T1, 20 kN;(c)T2, 10 kN;(d)T2, 20 kN;(e)T3, 20 kN;(f)T3, 30 kN

    Figure  14.  Load-displacement curve comparison: (a) T1, 10 kN; (b) T1, 20 kN; (c) T2, 10 kN; (d) T2, 20 kN; (e) T3, 20 kN; (f) T3, 30 kN

    表  1  試件特征點荷載值

    Table  1.   Load value of characteristic point of specimen

    Specimen numberVertical pressure /kNLoading modeCritical load, $ {P_{\text{y}}} $/kNPeak load, $ {P_{\text{m}}} $/kNLimit load, $ {P_{\text{u}}} $/kN
    T110Push(+)3.824.323.96
    Pull(?)2.362.612.28
    20Push(+)4.755.164.39
    Pull(?)3.764.133.18
    T210Push(+)4.527.327.26
    Pull(?)2.222.191.89
    20Push(+)7.859.046.47
    Pull(?)3.924.232.03
    T320Push(+)5.137.376.43
    Pull(?)4.916.405.47
    30Push(+)7.588.897.46
    Pull(?)7.017.455.68
    下載: 導出CSV

    表  2  試件特征點位移值與延性系數

    Table  2.   Displacement and ductility of specimen characteristic points

    Specimen numberVertical pressure /kNCritical displacement, $ {\varDelta _{\rm{y}}} $/mmPeak displacement, $ {\varDelta _{\rm{m}}} $/mmLimit displacement, $ {\varDelta _{\rm{u}}} $/mmDuctility coefficient, $ \eta $
    T1105.027.9911.022.20
    205.997.9211.921.99
    T2104.9110.8012.802.61
    208.089.9119.972.47
    T32010.058.9912.982.58
    307.0510.0217.942.54
    下載: 導出CSV

    表  3  耗能及等效黏滯阻尼系數

    Table  3.   Energy consumption and equivalent viscous damping coefficient

    Specimen numberVertical pressure/kNW/(kN·mm) ηe
    CrackPeakLimitCrackPeakLimit
    T1108.7515.8934.320.0900.0910.104
    2014.7222.1845.420.0920.0950.115
    T2106.8523.4259.480.0650.0710.088
    2024.7541.3485.000.0840.0900.081
    T32014.4531.9377.350.0920.0820.091
    3025.1242.42118.260.0780.0750.087
    下載: 導出CSV

    表  4  試驗與模擬峰值荷載對比

    Table  4.   Comparison of test and simulated peak load

    Specimen numberVertical pressure /
    kN
    Test value /
    kN
    Simulated value /
    kN
    Error /
    %
    T1104.324.667.9
    205.165.618.7
    T2107.326.945.5
    209.047.9911.6
    T3207.378.3313.0
    308.8910.7621.0
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Pan Y, Wang X Y, Guo R, et al. Seismic damage assessment of Nepalese cultural heritage building and seismic retrofit strategies: 25 April 2015 Gorkha (Nepal) earthquake. Eng Fail Anal, 2018, 87: 80 doi: 10.1016/j.engfailanal.2018.02.007
    [2] Pan Y, Li L J, Yao Y Y, et al. Evaluation methods for post-earthquake damage state of ancient masonry buildings. J Southwest Jiaotong Univ, 2016, 51(4): 704 doi: 10.3969/j.issn.0258-2724.2016.04.015

    潘毅, 李玲嬌, 姚蘊藝, 等. 磚石結構古建筑震后破壞狀態評估方法. 西南交通大學學報, 2016, 51(4):704 doi: 10.3969/j.issn.0258-2724.2016.04.015
    [3] Pan Y, Wang Z C, Shang F, et al. Study on isolated reinforcement scheme of ancient masonry pagoda in Sichuan Province. J Southwest Jiaotong Univ, 2018, 53(3): 540 doi: 10.3969/j.issn.0258-2724.2018.03.015

    潘毅, 王子超, 尚楓, 等. 四川省某磚石古塔隔震加固方案研究. 西南交通大學學報, 2018, 53(3):540 doi: 10.3969/j.issn.0258-2724.2018.03.015
    [4] Xu J, Liang J G, Shi L, et al. Discussion on some problems of development of masonry structures in China. Build Struct, 2016, 46(15): 91

    徐建, 梁建國, 石柳, 等. 我國砌體結構發展的若干問題探討. 建筑結構, 2016, 46(15):91
    [5] Zhang Y, Liu P Y, Qin Y, et al. Analysis on static and dynamic mechanical properties of masonry panel under in-plane loading. Chin J Appl Mech, 2018, 35(6): 1273

    張巖, 劉沛允, 秦宇, 等. 砌體單片墻結構的平面內靜力與動力性能分析. 應用力學學報, 2018, 35(6):1273
    [6] Zhang Y L, Wang Z X, Liu Z W, et al. Research on seismic performance assessment method and seismic strengthening measures for masonry Pagodas. World Earthquake Eng, 2019, 35(2): 41

    張永亮, 汪振新, 劉尊穩, 等. 磚石古塔抗震性能評估方法及抗震加固措施研究. 世界地震工程, 2019, 35(2):41
    [7] Minghini F, Milani G, Tralli A. Seismic risk assessment of a 50 m high masonry chimney using advanced analysis techniques. Eng Struct, 2014, 69: 255 doi: 10.1016/j.engstruct.2014.03.028
    [8] Guo Z X, Chai Z L, Hu Y D, et al. Experimental study on seismic behavior and mortar joint detail of machine-sawing stone masonry wall. J Build Struct, 2011, 32(3): 64

    郭子雄, 柴振嶺, 胡奕東, 等. 機器切割料石砌筑石墻灰縫構造及抗震性能試驗研究. 建筑結構學報, 2011, 32(3):64
    [9] Zhuang S S, Guo Z X, Chai Z L. Experimental investigation of shear capacity of sawn stone masonry joint. J Huaqiao Univ Nat Sci, 2019, 40(4): 489

    莊思思, 郭子雄, 柴振嶺. 機鋸條石砌筑灰縫的抗剪性能試驗. 華僑大學學報(自然科學版), 2019, 40(4):489
    [10] Jiang Y F, Guo Z X, Xu X L. Test on mechanical properties of large-size dry stone masonry joint. J Huaqiao Univ Nat Sci, 2020, 41(1): 1

    江云帆, 郭子雄, 許秀林. 大尺寸條石無漿砌縫力學性能試驗. 華僑大學學報(自然科學版), 2020, 41(1):1
    [11] Wang L, Guo Z X, Ye Y, et al. Experimental study on seismic and mechanical behavior of stone masonry joints. China Civil Eng J, 2018, 51(12): 63

    王蘭, 郭子雄, 葉勇, 等. 石墻灰縫抗震性能與受力機理試驗研究. 土木工程學報, 2018, 51(12):63
    [12] Wang D D, Peng B. Research on mechanical property of shear-compression for mortar material. J Water Resour Water Eng, 2016, 27(4): 184 doi: 10.11705/j.issn.1672-643X.2016.04.34

    王冬冬, 彭斌. 砂漿材料壓剪受力性能研究. 水資源與水工程學報, 2016, 27(4):184 doi: 10.11705/j.issn.1672-643X.2016.04.34
    [13] Wang Y H, Lan G Q, Zeng G Y, et al. Study on shear test method of earthen based masonry along mortar joint. Adv Eng Sci, 2020, 52(5): 136

    王毅紅, 蘭官奇, 曾貴緣, 等. 生土基砌體沿通縫抗剪試驗方法研究. 工程科學與技術, 2020, 52(5):136
    [14] Cai Y, Shi C X, Ma C L, et al. Study of the masonry shear strength under shear-compression action. J Build Struct, 2004, 25(5): 118 doi: 10.3321/j.issn:1000-6869.2004.05.019

    蔡勇, 施楚賢, 馬超林, 等. 砌體在剪-壓作用下抗剪強度研究. 建筑結構學報, 2004, 25(5):118 doi: 10.3321/j.issn:1000-6869.2004.05.019
    [15] Yang N, Teng D Y. Shear performance of Tibetan stone masonry under shear-compression loading. Eng Mech, 2020, 37(2): 221

    楊娜, 滕東宇. 藏式石砌體在剪-壓復合作用下抗剪性能研究. 工程力學, 2020, 37(2):221
    [16] Xin R, Yao J T. Research on entire failure modes of multi-storey masonry walls. World Earthquake Eng, 2013, 29(1): 139 doi: 10.3969/j.issn.1007-6069.2013.01.022

    信任, 姚繼濤. 多層砌體結構墻體整體破壞模式研究. 世界地震工程, 2013, 29(1):139 doi: 10.3969/j.issn.1007-6069.2013.01.022
    [17] Haach V G, Vasconcelos G, Louren?o P B. Experimental analysis of reinforced concrete block masonry walls subjected to in-plane cyclic loading. J Struct Eng, 2010, 136(4): 452 doi: 10.1061/(ASCE)ST.1943-541X.0000125
    [18] Banting B R, El-Dakhakhni D D. Seismic design parameters for special masonry structural walls detailed with confined boundary elements. J Struct Eng, 2014, 140(10): 04014067 doi: 10.1061/(ASCE)ST.1943-541X.0000980
    [19] Chen B W, Tang C, Wu Y F, et al. Experimental studies on seismic behavior of autoclaved fly ash perforated brick walls with constructional columns. Earthquake Eng Eng Vib, 2016, 36(5): 116

    陳伯望, 唐楚, 鄔逸夫, 等. 構造柱對蒸壓粉煤灰多孔磚砌體抗震性能影響的試驗研究. 地震工程與工程振動, 2016, 36(5):116
    [20] Wang Q W, Shi Q X, He W W, et al. Experimental study on mechanical behavior of DP-type fired perforated brick walls under cyclic loading. J Build Struct, 2017, 38(12): 131

    王秋維, 史慶軒, 何巍巍, 等. 反復荷載作用下DP型燒結多孔磚墻體受力性能試驗研究. 建筑結構學報, 2017, 38(12):131
    [21] Li Z X, Zhou X J, Xia D T, et al. Experiment on seismic behavior of non-autoclaved and non-sintered fly-ash perforated brick walls. Earthquake Eng Eng Vib, 2012, 32(4): 125

    李忠獻, 周曉潔, 夏多田, 等. 免蒸免燒粉煤灰多孔磚墻體抗震性能試驗研究. 地震工程與工程振動, 2012, 32(4):125
    [22] Zhang W X, Yue F H, Liu J, et al. Analysis on seismic performance of masonry walls under multiple influence parameters. J Hunan Univ Nat Sci, 2017, 44(3): 45

    張望喜, 岳風華, 劉杰, 等. 多參數影響下的砌體墻體抗震性能分析. 湖南大學學報(自然科學版), 2017, 44(3):45
    [23] Fu Y N, Xiong L Q, Yan L, et al. Elasto-plastic finite element analysis of unreinforced masonry farmhouse under earthquake. World Earthquake Eng, 2019, 35(4): 18

    付亞男, 熊禮全, 閆磊, 等. 無筋砌體農居地震彈塑性有限元研究. 世界地震工程, 2019, 35(4):18
    [24] Yang W Z, Fan J. A generic stress-strain equation for masonry materials in compression. J Zhengzhou Univ Eng Sci, 2007, 28(1): 47

    楊衛忠, 樊濬. 砌體受壓應力?應變關系. 鄭州大學學報(工學版), 2007, 28(1):47
    [25] Zheng N N, Li Y M, Liu F Q. Pseudo-static test study on seismic behavior of masonry wall restrained by core-tie-columns. China Civil Eng J, 2013, 46(Suppl 1): 202

    鄭妮娜, 李英民, 劉鳳秋. 芯柱式構造柱約束墻體抗震性能擬靜力試驗研究. 土木工程學報, 2013, 46(增刊1): 202
    [26] Yang W Z. Constitutive relationship model for masonry materials in compression. Build Struct, 2008, 38(10): 80

    楊衛忠. 砌體受壓本構關系模型. 建筑結構, 2008, 38(10):80
    [27] Shi C X. Theory and Design of Masonry Structure. 2nd Ed. Beijing: China Architecture & Building Press, 2003

    施楚賢. 砌體結構理論與設計. 2版. 北京: 中國建筑工業出版社, 2003
  • 加載中
圖(14) / 表(4)
計量
  • 文章訪問數:  867
  • HTML全文瀏覽量:  395
  • PDF下載量:  35
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-08-12
  • 網絡出版日期:  2020-11-18
  • 刊出日期:  2022-02-15

目錄

    /

    返回文章
    返回