-
摘要: 多軸聯動下的串聯多關節工業機器人在空間軌跡運動時,在時間上保證各關節軸單獨具有良好的跟蹤性能,而由于機械電氣的遲滯效應,并不能完全保證理想的輪廓軌跡,這說明各個伺服軸的運動在幾何空間中的同步非常重要。針對運動指令與實際位置之間的遲滯所帶來的機器人末端輪廓精度不高的問題,本文結合工業機器人現有的運動學和動力學以及傳統的PID控制理論,研究了六關節機器人位置域控制算法。將機器人空間輪廓軌跡的控制,通過采用主?從運動關系實時建立的方法,將時域中的各個伺服關節的同步控制方法,變換到位置域的各個伺服關節的主?從跟隨的控制方法,在實現位置域的同步控制的同時,引入基于位置域的PD控制,減少了主?從跟隨控制的跟隨誤差,從而整體提高機器人末端的輪廓運動精度。該方法在Linux CNC(Computerized Numerical Control)數控系統上,以某公司HSR-JR605機器人為對象進行了實驗,證明采用位置域控制方法對六關節機器人空間運動軌跡精度的提高有積極作用。Abstract: In the context of the rapid development of intelligent manufacturing, high-precision motion control of industrial robots has attracted increasing research attention. High-speed and high-precision motion control is a development trend associated with the current industrial robots. Industrial transformation and upgradation can be accelerated only via the independent research and development of robot core technologies, including robot high-precision control systems, ensuring the transition of the manufacturing industry in China toward intelligent and digital development. Currently, the contour tracking error associated with majority of the multiaxes CNC machine tools and multijoint industrial robots is a common problem. A good tracking performance can be achieved in time with respect to each joint axis when the space trajectory of the serial multijoint industrial robot changes under multiaxes linkage. The ideal contour trajectory cannot be fully ensured because of the mechanical and electrical hysteresis effects. Therefore, the synchronization of the motion of each servo axis in the geometric space is very important. In this paper, the existing kinematics and dynamics of industrial robots were combined with the traditional PID control theory for studying position domain control algorithm of the six-joint robot to resolve the problem of low accuracy associated with the robot end profile, which can be attributed to the lag between the motion instruction and the actual position. The algorithm uses the method of real-time establishment of the master–slave motion relation for controlling the spatial contour trajectory of the robot. It further transforms the synchronization control method of each servo joint in the time domain into the master–slave follow control method of each servo joint in the position domain. While realizing synchronization control in the position domain, PD control based on position domain was introduced to reduce the following error of the master–slave following control, improving the overall accuracy of the contour motion of the robot end. The method proposed in this paper has been tested on the Linux CNC numerical control system with a company’s HSR-JR605 robot, indicating that the position of the domain control method employed positively affects the accuracy of six articulated robot space trajectory.
-
Key words:
- contour tracking /
- six-joint robot /
- position domain control /
- PID control /
- LinuxCNC
-
圖 5 進給速率為30000 mm·min?1時不同控制下末端的平面圓形跟蹤軌跡對比圖。(a)三維圖;(b)x?y平面投影;(c)x?z平面投影;(d)y?z平面投影
Figure 5. Comparison of the planar circular tracking trajectories at the ends under different controls when the feed rate is 30000 mm·min?1: (a) three-dimensional figure; (b) x?y plane projection; (c) x?z plane projection; (d) y?z plane projection
圖 8 進給速率為10000 mm·min?1時不同控制下末端的平面矩形跟蹤軌跡對比圖。(a)三維圖;(b)x?y平面投影;(c)x?z平面投影;(d)y?z平面投影
Figure 8. Comparison of the planar rectangular tracking tracks at ends under different controls at a feed rate of 10000 mm·min?1: (a) three-dimensional figure; (b) x?y plane projection; (c) x?z plane projection; (d) y?z plane projection
圖 6 進給速率為15000 mm·min?1時不同控制下末端的平面圓形跟蹤軌跡對比圖。(a)三維圖;(b)x?y平面投影;(c)x?z平面投影;(d)y?z平面投影
Figure 6. Comparison of the planar circular tracking trajectories at ends under different controls when the feed rate is 15000 mm·min?1: (a) three-dimensional figure; (b) x–y plane projection; (c) x–z plane projection; (d) y–z plane projection
圖 7 進給速率為15000 mm·min?1時不同控制下末端的平面矩形跟蹤軌跡對比圖。(a)三維圖;(b)x?y平面投影;(c)x?z平面投影;(d)y?z平面投影
Figure 7. Comparison of the planar rectangular tracking tracks at ends under different controls at a feed rate of 15000 mm·min?1: (a) three-dimensional figure; (b) x?y plane projection; (c) x?z plane projection; (d) y?z plane projection
表 1 PID參數表
Table 1. PID parameters
The shaft no. Parameter P Parameter I Parameter D J1 0.31 0 6.2 J2 0.38 0 5.7 J3 0.45 0 4.95 J4 0.53 0 3.71 J5 0.78 0 3.12 J6 0.93 0 1.86 www.77susu.com -
參考文獻
[1] Zhou J. Intelligent manufacturing is the main direction of “Made in China 2025”. Enterprise Observer, 2019(11): 54周濟. 智能制造是“中國制造2025”主攻方向. 企業觀察家, 2019(11):54 [2] Zhang H X. Research on the development status and trend of industrial robots at home and abroad. Electron World, 2013(12): 5 doi: 10.3969/j.issn.1003-0522.2013.12.002張紅霞. 國內外工業機器人發展現狀與趨勢研究. 電子世界, 2013(12):5 doi: 10.3969/j.issn.1003-0522.2013.12.002 [3] Zhang Y. Review of the development history of foreign industrial robots. Robot Ind, 2015(3): 68張宇. 國外工業機器人發展歷史回顧. 機器人產業, 2015(3):68 [4] Yu D Q. Current situation and trend of industrial robots at home and abroad. Popular Utiliz Electr, 2017(9): 20余德泉. 國內外工業機器人發展現狀與趨勢. 大眾用電, 2017(9):20 [5] Ostergaard E H. Future road of industrial robots. Office Informatization, 2015(11): 15艾斯本·奧斯特加. 工業機器人的未來之路. 辦公自動化, 2015(11):15 [6] Astrom K J, Hagglund T. The future of PID control. Control Eng Practice, 2001, 9(11): 1163 doi: 10.1016/S0967-0661(01)00062-4 [7] Wang S P, Xie L, Li L P, et al. Covert attack technology of EtherCAT based 7 degrees of freedom manipulator. Chin J Eng, 2020, 42(12): 1653汪世鵬, 解侖, 李連鵬, 等. 基于EtherCAT總線的七自由度機械臂的隱蔽攻擊技術. 工程科學學報, 2020, 42(12):1653 [8] Barton K L, Bristow D A, Alleyne A G. Design of a linear time-varying cross-coupled iterative learning controller//2008 American Control Conference (ACC). Seattle, 2008: 3914 [9] Hu C X, Yao B, Wang Q F. Coordinated contouring controller design for an industrial biaxial linear motor driven gantry//IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM 2009). Singapore, 2009: 1810 [10] Ouyang P R, Dam T, Pano V. Cross-coupled PID control in position domain for contour tracking. Robotica, 2015, 33(6): 1351 doi: 10.1017/S0263574714000769 [11] Mu H R. Analysis and research on motion control of industrial robots. Electron Technol Software Eng, 2018(23): 115牟海榮. 工業機器人運動控制分析與研究. 電子技術與軟件工程, 2018(23):115 [12] Yeh S S, Hsu P L. A new approach to bi-axial cross-coupled control//Proceedings of the 2000 IEEE International Conference on Control Applications. Anchorage, 2000: 168 [13] Ouyang P R, Dam T, Huang J, et al. Contour tracking control in position domain. Mechatronics, 2012, 22(7): 934 doi: 10.1016/j.mechatronics.2012.06.001 [14] Ouyang P R, Kang H M, Yue W H, et al. Revisiting hybrid five-bar mechanism: Position domain control application//2014 IEEE International Conference on Information and Automation (ICIA). Hailar, 2014: 795 [15] Ouyang P R, Pano V, Tang J, et al. Nonlinear PD-type control in position domain//2016 IEEE 11th Conference on Industrial Electronics and Applications (ICIEA). Hefei, 2016: 2407 [16] Yue W H, Pano V, Ouyang P R, et al. Model-independent position domain sliding mode control for contour tracking of robotic manipulator. Int J Syst Sci, 2017, 48(1): 190 doi: 10.1080/00207721.2016.1173742 [17] Ouyang P R, Pano V, Tang J, et al. Position domain nonlinear PD control for contour tracking of robotic manipulator. Robot Comput-Integr Manuf, 2018, 51: 14 doi: 10.1016/j.rcim.2017.11.017 [18] Ouyang P R, Pano V, Acob J. Position domain contour control for multi-DOF robotic system. Mechatronics, 2013, 23(8): 1061 doi: 10.1016/j.mechatronics.2013.08.005 [19] Koutsoukos X D, Antsaklis P J, Stiver J A, et al. Supervisory control of hybrid systems. Proc IEEE, 2000, 88(7): 1026 doi: 10.1109/5.871307 [20] Ouyang P R. Hybrid Intelligent Machine Systems: Design, Modeling and Control [Dissertation]. Saskatoon: University of Saskatchewan, 2005 [21] Gao Z Q, Huang Y, Han J Q. An alternative paradigm for control system design//Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No. 01CH37228). Orlando, 2001: 4578 [22] Shen R M. Research on the Development of the Controlling System for Delta Robot Based on LinuxCNC [Dissertation]. Wuhan: Huazhong University of Science and Technology, 2018沈榮敏. 基于LinuxCNC的Delta機器人控制系統研發[學位論文]. 武漢: 華中科技大學, 2018 [23] Sun H H. Research and Development of Industrial Robot The Control System Software Based on LinuxCNC [Dissertation]. Guangzhou: South China University of Technology, 2016孫會會. 基于LinuxCNC的工業機器人控制系統軟件研究與開發[學位論文]. 廣州: 華南理工大學, 2016 [24] Zhang R H. Design and Implementation of LinuxCNC-Based Multi-Axis Control System [Dissertation]. Chengdu: University of Electronic Science and Technology, 2016張睿恒. 基于LinuxCNC的多軸控制系統設計與實現[學位論文]. 成都: 電子科技大學, 2016 [25] Gao M Y, Qin X S, Bai J, et al. Development of industrial robot control system based on ROS and LinuxCNC. Mach Manuf, 2015, 53(10): 21 doi: 10.3969/j.issn.1000-4998.2015.10.005高美原, 秦現生, 白晶, 等. 基于ROS和LinuxCNC的工業機器人控制系統開發. 機械制造, 2015, 53(10):21 doi: 10.3969/j.issn.1000-4998.2015.10.005 -