Chlorine gas absorption performance of steel-slag-based biomass-activated carbon prepared via modified discarded walnut shell
-
摘要: 以特殊鋼渣超微粉與廢棄核桃殼為研究對象,利用特殊鋼渣超微粉的化學成分對廢棄核桃殼進行改性處理制備鋼渣基生物質活性炭。研究廢棄核桃殼超微粉與特殊鋼渣超微粉的質量比、特殊鋼渣超微粉細度和吸附環境溫度對鋼渣基生物質活性炭吸收氯氣性能的影響。結果表明:廢棄核桃殼超微粉與特殊鋼渣超微粉的質量比為100∶6,特殊鋼渣超微粉的細度為600目,吸附環境溫度為30 ℃時鋼渣基生物質活性炭吸收氯氣性能較好。特殊鋼渣超微粉中Fe2O3具有磁性有利于氯氣在鋼渣基生物質活性炭表面形成富集,提高其吸附能力,CuO和MnO具有催化性可以協助促進鋼渣基生物質活性炭的吸附能力。特殊鋼渣超微粉細度過大,會造成小粒徑顆粒團聚,從而影響鋼渣基生物質活性炭對氯氣的吸附能力進一步提高;在特殊鋼渣超微粉粒徑較小時,均勻性較好的特殊鋼渣超微粉對提高鋼渣基生物質活性炭吸附氯氣較小。較高的吸附環境溫度可能導致鋼渣基生物質活性炭對氯氣出現解析現象;同時鋼渣基生物質活性炭表面沒有出現特殊鋼渣超微粉團聚與沉積的現象,具有層狀結構特征,為吸附氯氣提供了空間。Abstract: Discarded walnut shells were modified by the chemical composition of special steel slag ultrafine powder to obtain steel-slag-based biomass-activated carbon. The influences of the mass ratio of discarded walnut shell ultrafine powder and special steel slag ultrafine powder, the fineness of special steel slag ultrafine powder, and adsorption ambient temperature on the absorbed chlorine gas performance of steel-slag-based biomass-activated carbon were studied. Results show good chlorine gas absorption performance when the mass ratio of discarded walnut shell ultrafine powder and special steel slag ultrafine powder is 100∶6, the fineness of special steel slag ultrafine powder is 600 mesh, and adsorption ambient temperature is 30 ℃. The magnetic property of Fe2O3 in special steel slag ultrafine powder is conducive to the formation and enrichment of chlorine gas on the surface of steel-slag-based biomass-activated carbon, improving its absorption performance. Catalytic performance of CuO and MnO helps promote the absorbing performance of steel-slag-based biomass-activated carbon. When the fineness of special steel slag ultrafine powder is excessively large, agglomeration of small particle size occurs and affects the adsorption capacity of steel-slag-based biomass-activated carbon to chlorine gas. When the particle size of special steel slag ultrafine powder is small, the special steel slag ultrafine powder with good uniformity is less effective in improving the adsorption of chlorine on the steel-slag-based biomass-activated carbon. The higher adsorption ambient temperature may lead to the analytical phenomenon of chlorine gas from steel-slag-based biomass-activated carbon. Moreover, no superfine agglomeration and deposition of special steel slag ultrafine powder on the surface of steel-slag-based biomass-activated carbon are observed. The obtained carbon exhibits the layered structure characteristics and provides space for chlorine gas adsorption.
-
圖 2 生物質活性炭與鋼渣基生物質活性炭的微觀形貌。(a)生物質活性炭;(b)鋼渣基生物質活性炭(廢棄核桃殼超微粉與特殊鋼渣超微粉的質量比分別為100∶6,特殊鋼渣超微粉的細度為600目)
Figure 2. Microstructure of biomass-activated carbon and steel-slag-based biomass-activated carbon: (a) biomass activated carbon;(b) steel-slag-based biomass-activated carbon (the mass ratio of discarded walnut shell ultrafine powder and special steel slag ultrafine powder is 100∶6 and fineness of special steel slag ultrafine powder is 600 mesh)
表 1 廢棄核桃殼超微粉與特殊鋼渣超微粉的質量比對鋼渣基生物質活性炭的影響
Table 1. Effect of the mass ratio of discarded walnut shell ultrafine powder and special steel slag ultrafine powder on steel-slag-based biomass-activated carbon
Mass ratio Chlorine adsorption capacity in different pressures/% 0 MPa 0.02 MPa 0.04 MPa 0.08 MPa 0.16 MPa 0.24 MPa 100∶0 0 4.06 7.52 16.75 21.81 28.39 100∶2 0 4.75 8.32 18.14 23.62 30.15 100∶4 0 5.48 9.53 20.65 26.89 34.35 100∶6 0 5.94 10.07 21.47 27.93 35.16 100∶8 0 5.69 9.83 20.52 26.36 34.02 100∶10 0 5.25 9.75 20.60 26.31 33.36 表 2 特殊鋼渣超微粉的化學成分(質量分數)
Table 2. Chemical composition of special steel slag ultrafine powder
% CaO SiO2 Al2O3 MgO Fe2O3 Cr2O3 PbO P2O5 CuO MnO Other 53.05 23.61 8.33 7.52 1.92 1.04 0.79 0.43 0.41 0.40 2.50 表 3 鋼渣基生物質活性炭的孔結構
Table 3. Pore structure of steel-slag-based biomass-activated carbon
Mass ratio Pore structure/
(cm3·g?1)Specific surface area/
(m2·g?1)Average pore
size/nm100∶0 0.72 996 11.05 100∶2 0.72 975 11.02 100∶4 0.71 960 10.96 100∶6 0.68 953 10.87 100∶8 0.63 907 10.44 100∶10 0.56 835 10.23 表 4 特殊鋼渣超微粉細度對鋼渣基生物質活性炭的影響
Table 4. Effect of the fineness of special steel slag ultrafine powder on steel-slag-based biomass-activated carbon
Fineness
(mesh)Chlorine adsorption capacity in different pressures/% 0 MPa 0.02 MPa 0.04 MPa 0.08 MPa 0.16 MPa 0.24 MPa 400 0 5.15 9.17 19.63 25.47 32.51 500 0 5.42 9.50 20.26 26.22 33.84 600 0 5.94 10.07 21.47 27.93 35.16 700 0 5.95 10.15 21.80 28.25 35.22 800 0 6.03 10.23 21.95 28.56 35.91 表 5 特殊鋼渣超微粉的均勻性
Table 5. Uniformity of special steel slag
Fineness (mesh) d10 d50 d90 d90/d10 (d90 ? d10)/d50 400 7.49 17.65 33.09 4.42 1.45 500 4.31 11.11 23.97 5.56 1.77 600 3.21 9.69 22.89 7.13 2.03 700 10.34 15.16 21.95 2.12 0.77 800 6.00 10.78 17.62 2.94 1.08 表 6 吸附環境溫度對鋼渣基生物質活性炭的影響
Table 6. Effect of adsorption ambient temperature on steel-slag-based biomass-activated carbon
Adsorption ambient temperature/
℃Chlorine adsorption capacity in different pressure/% 0 MPa 0.02 MPa 0.04 MPa 0.08 MPa 0.16 MPa 0.24 MPa 20 0 6.02 10.60 22.86 28.47 36.34 30 0 5.94 10.07 21.47 27.93 35.16 40 0 5.31 9.83 19.84 25.32 32.40 www.77susu.com -
參考文獻
[1] Li J F, Zhang B, Liu W M. A typical small-scale chlorine leak and dispersion simulation in industrial facilities. Int J Energy Environ, 2011, 2(6): 1039 [2] Zhang H. Cu?Ce/TiO2 moisture performance based on photocatalytic performance. J Mater Eng, 2018, 46(1): 114 doi: 10.11868/j.issn.1001-4381.2016.001100張浩. 基于光催化性能的Cu?Ce/TiO2濕性能. 材料工程, 2018, 46(1):114 doi: 10.11868/j.issn.1001-4381.2016.001100 [3] Zhang H, Huang X J, Zong Z F, et al. Optimization of preparation program for biomass based porous active carbon by response surface methodology based on adsorptive property. J Mater Eng, 2017, 45(6): 67 doi: 10.11868/j.issn.1001-4381.2016.000979張浩, 黃新杰, 宗志芳, 等. 基于吸附性能的生物質基多孔活性炭制備方案的響應面法優化. 材料工程, 2017, 45(6):67 doi: 10.11868/j.issn.1001-4381.2016.000979 [4] Zhang H, Fang Y. Temperature dependent photoluminescence of surfactant assisted electrochemically synthesized ZnSe nanostructures. J Alloys Compd, 2019, 781: 201 doi: 10.1016/j.jallcom.2018.11.375 [5] Ding A W. A theoretical model of public response to the homeland security advisory system. J Defense Model Simul, 2006, 3(1): 45 doi: 10.1177/875647930600300105 [6] Hsu N Y, Chen P Y, Chang H W, et al. Changes in profiles of airborne fungi in flooded homes in southern Taiwan after Typhoon Morakot. Sci Total Environ, 2011, 409(9): 1677 doi: 10.1016/j.scitotenv.2011.01.042 [7] Zhang X L, Zhang Y, Wang S S, et al. Effect of activation agents on the surface chemical properties and desulphurization performance of activated carbon. Sci China Technol Sci, 2010, 53(9): 2515 doi: 10.1007/s11431-010-4058-5 [8] Sun Y, Webley P A. Preparation of activated carbons from corncob with large specific surface area by a variety of chemical activators and their application in gas storage. Chem Eng J, 2010, 162(3): 883 doi: 10.1016/j.cej.2010.06.031 [9] Zhang H. Study on preparation mechanism and property of biomass environmental coordination function material with Fourier transform infrared spectrum. Spectrosc Spectr Anal, 2017, 37(2): 412張浩. 基于傅里葉紅外光譜的生物質環境協調功能材料制備機理及性能研究. 光譜學與光譜分析, 2017, 37(2):412 [10] Sun K, Jiang J C. Preparation and characterization of activated carbon from rubber-seed shell by physical activation with steam. Biomass Bioenergy, 2010, 34(4): 539 doi: 10.1016/j.biombioe.2009.12.020 [11] Fang N J, Guo J X, Shu S, et al. Influence of textures, oxygen-containing functional groups and metal species on SO2 and NO removal over Ce?Mn/NAC. Fuel, 2017, 202: 328 doi: 10.1016/j.fuel.2017.04.035 [12] Ding J, Zhong Q, Zhang S L. Catalytic efficiency of iron oxides in decomposition of H2O2, for simultaneous NOX and SO2 removal: Effect of calcination temperature. J Mol Catal A Chem, 2014, 393: 222 doi: 10.1016/j.molcata.2014.06.018 [13] Ramezanianpour A A, Kazemian A, Moghaddam M A, et al. Studying effects of low-reactivity GGBFS on chloride resistance of conventional and high strength concretes. Mater Struct, 2016, 49(7): 2597 doi: 10.1617/s11527-015-0670-y [14] Morel F, Bounor-Legaré V, Espuche E, et al. Surface modification of calcium carbonate nanofillers by fluoro- and alkyl-alkoxysilane: consequences on the morphology, thermal stability and gas barrier properties of polyvinylidene fluoride nanocomposites. Eur Polym J, 2012, 48(5): 919 doi: 10.1016/j.eurpolymj.2012.03.004 [15] Liu T C. The Highly Effective Technology to Active Steel Slag and Its Application in Green Construct Materials [Dissertation]. Changsha: Central South University, 2008劉天成. 鋼渣高效活化及在綠色建材中的應用[學位論文]. 長沙: 中南大學, 2008 [16] Zhang Z H, Liao J L, Ju J T, et al. Treatment process and utilization technology of steel slag in China and abroad. J Iron Steel Res, 2013, 25(7): 1張朝暉, 廖杰龍, 巨建濤, 等. 鋼渣處理工藝與國內外鋼渣利用技術. 鋼鐵研究學報, 2013, 25(7):1 [17] Murri A N, Rickard W D A, Bignozzi M C, et al. High temperature behaviour of ambient cured alkali-activated materials based on ladle slag. Cem Concr Res, 2013, 43: 51 doi: 10.1016/j.cemconres.2012.09.011 [18] Zhang H, Xu Y D, Zhang L, et al. Preparation of steel slag modified activated carbon and its formaldehyde degradation performance. Chin J Process Eng, 2019, 19(6): 1228 doi: 10.12034/j.issn.1009-606X.219132張浩, 徐遠迪, 張磊, 等. 鋼渣改性活性炭的制備及其降解甲醛性能. 過程工程學報, 2019, 19(6):1228 doi: 10.12034/j.issn.1009-606X.219132 [19] Chuang K H, Lu C Y, Wey M Y, et al. NO removal by activated carbon-supported copper catalysts prepared by impregnation, polyol, and microwave heated polyol processes. Appl Catal A, 2011, 397(1-2): 234 doi: 10.1016/j.apcata.2011.03.003 [20] Zhang H, Yang G, Liu X Y, et al. Influences of steel slag powder on anaerobic fermentation of cattle manure for biogas yield. Non-Metallic Mines, 2016, 39(5): 45 doi: 10.3969/j.issn.1000-8098.2016.05.015張浩, 楊剛, 劉秀玉, 等. 鋼渣微粉對牛糞厭氧發酵產沼氣的影響. 非金屬礦, 2016, 39(5):45 doi: 10.3969/j.issn.1000-8098.2016.05.015 [21] Wang H J, Xiao W Q, Xue J W, et al. Chlorine adsorption properties of activated carbon. Shanxi Chem Ind, 2010, 30(3): 1 doi: 10.3969/j.issn.1004-7050.2010.03.001王慧娟, 肖偉強, 薛建偉, 等. 活性炭吸附氯氣的性能研究. 山西化工, 2010, 30(3):1 doi: 10.3969/j.issn.1004-7050.2010.03.001 [22] Lee J, Kim J, Hyeon T. Recent progress in the synthesis of porous carbon materials. Adv Mater, 2006, 18(6): 2073 [23] Zhang H, Fang Y. Temperature dependent photoluminescence of surfactant assisted electrochemically synthesized ZnSe nanostructures. J Alloys Compd, 2019, 781: 201 [24] Zhang H. Preparation of ecological activated carbon based on steel slag-modified biomass waste material and its formaldehyde degradation performance. Chin J Eng, 2020, 42(2): 172張浩. 鋼渣改性生物質廢棄材料制備生態活性炭及其降解甲醛性能. 工程科學學報, 2020, 42(2):172 [25] Han B, Zhou M H, Rong D. Preparation and characterization of activated carbon from rice straw. J Agro-Environ Sci, 2009, 28(4): 828 doi: 10.3321/j.issn:1672-2043.2009.04.034韓彬, 周美華, 榮達. 稻草秸稈活性炭的制備及其表征. 農業環境科學學報, 2009, 28(4):828 doi: 10.3321/j.issn:1672-2043.2009.04.034 -