<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

特殊鋼渣超微粉改性廢棄核桃殼制備鋼渣基生物質活性炭及其吸收氯氣的性能

孫大為 鄧軍

孫大為, 鄧軍. 特殊鋼渣超微粉改性廢棄核桃殼制備鋼渣基生物質活性炭及其吸收氯氣的性能[J]. 工程科學學報, 2021, 43(7): 946-951. doi: 10.13374/j.issn2095-9389.2020.08.04.004
引用本文: 孫大為, 鄧軍. 特殊鋼渣超微粉改性廢棄核桃殼制備鋼渣基生物質活性炭及其吸收氯氣的性能[J]. 工程科學學報, 2021, 43(7): 946-951. doi: 10.13374/j.issn2095-9389.2020.08.04.004
SUN Da-wei, DENG Jun. Chlorine gas absorption performance of steel-slag-based biomass-activated carbon prepared via modified discarded walnut shell[J]. Chinese Journal of Engineering, 2021, 43(7): 946-951. doi: 10.13374/j.issn2095-9389.2020.08.04.004
Citation: SUN Da-wei, DENG Jun. Chlorine gas absorption performance of steel-slag-based biomass-activated carbon prepared via modified discarded walnut shell[J]. Chinese Journal of Engineering, 2021, 43(7): 946-951. doi: 10.13374/j.issn2095-9389.2020.08.04.004

特殊鋼渣超微粉改性廢棄核桃殼制備鋼渣基生物質活性炭及其吸收氯氣的性能

doi: 10.13374/j.issn2095-9389.2020.08.04.004
基金項目: 國家自然科學基金資助項目(51774232);國家重點研發計劃資助項目(2018YFC0807900)
詳細信息
    通訊作者:

    E-mail: dengj518@xust.edu.cn

  • 中圖分類號: X753

Chlorine gas absorption performance of steel-slag-based biomass-activated carbon prepared via modified discarded walnut shell

More Information
  • 摘要: 以特殊鋼渣超微粉與廢棄核桃殼為研究對象,利用特殊鋼渣超微粉的化學成分對廢棄核桃殼進行改性處理制備鋼渣基生物質活性炭。研究廢棄核桃殼超微粉與特殊鋼渣超微粉的質量比、特殊鋼渣超微粉細度和吸附環境溫度對鋼渣基生物質活性炭吸收氯氣性能的影響。結果表明:廢棄核桃殼超微粉與特殊鋼渣超微粉的質量比為100∶6,特殊鋼渣超微粉的細度為600目,吸附環境溫度為30 ℃時鋼渣基生物質活性炭吸收氯氣性能較好。特殊鋼渣超微粉中Fe2O3具有磁性有利于氯氣在鋼渣基生物質活性炭表面形成富集,提高其吸附能力,CuO和MnO具有催化性可以協助促進鋼渣基生物質活性炭的吸附能力。特殊鋼渣超微粉細度過大,會造成小粒徑顆粒團聚,從而影響鋼渣基生物質活性炭對氯氣的吸附能力進一步提高;在特殊鋼渣超微粉粒徑較小時,均勻性較好的特殊鋼渣超微粉對提高鋼渣基生物質活性炭吸附氯氣較小。較高的吸附環境溫度可能導致鋼渣基生物質活性炭對氯氣出現解析現象;同時鋼渣基生物質活性炭表面沒有出現特殊鋼渣超微粉團聚與沉積的現象,具有層狀結構特征,為吸附氯氣提供了空間。

     

  • 圖  1  特殊鋼渣超微粉的粒度分布。(a)細度為400目;(b)細度為500目;(c)細度為600目;(d)細度為700目;(e)細度為800目

    Figure  1.  Particle size distribution of special steel slag: (a) fineness of 400 mesh; (b) fineness of 500 mesh; (c) fineness of 600 mesh; (d) fineness of 700 mesh; (e) fineness of 800 mesh

    圖  2  生物質活性炭與鋼渣基生物質活性炭的微觀形貌。(a)生物質活性炭;(b)鋼渣基生物質活性炭(廢棄核桃殼超微粉與特殊鋼渣超微粉的質量比分別為100∶6,特殊鋼渣超微粉的細度為600目)

    Figure  2.  Microstructure of biomass-activated carbon and steel-slag-based biomass-activated carbon: (a) biomass activated carbon;(b) steel-slag-based biomass-activated carbon (the mass ratio of discarded walnut shell ultrafine powder and special steel slag ultrafine powder is 100∶6 and fineness of special steel slag ultrafine powder is 600 mesh)

    表  1  廢棄核桃殼超微粉與特殊鋼渣超微粉的質量比對鋼渣基生物質活性炭的影響

    Table  1.   Effect of the mass ratio of discarded walnut shell ultrafine powder and special steel slag ultrafine powder on steel-slag-based biomass-activated carbon

    Mass ratioChlorine adsorption capacity in different pressures/%
    0 MPa0.02 MPa0.04 MPa0.08 MPa0.16 MPa0.24 MPa
    100∶004.067.5216.7521.8128.39
    100∶204.758.3218.1423.6230.15
    100∶405.489.5320.6526.8934.35
    100∶605.9410.0721.4727.9335.16
    100∶805.699.8320.5226.3634.02
    100∶1005.259.7520.6026.3133.36
    下載: 導出CSV

    表  2  特殊鋼渣超微粉的化學成分(質量分數)

    Table  2.   Chemical composition of special steel slag ultrafine powder %

    CaOSiO2Al2O3MgOFe2O3Cr2O3PbOP2O5CuOMnOOther
    53.0523.618.337.521.921.040.790.430.410.402.50
    下載: 導出CSV

    表  3  鋼渣基生物質活性炭的孔結構

    Table  3.   Pore structure of steel-slag-based biomass-activated carbon

    Mass ratioPore structure/
    (cm3·g?1)
    Specific surface area/
    (m2·g?1)
    Average pore
    size/nm
    100∶00.7299611.05
    100∶20.7297511.02
    100∶40.7196010.96
    100∶60.6895310.87
    100∶80.6390710.44
    100∶100.5683510.23
    下載: 導出CSV

    表  4  特殊鋼渣超微粉細度對鋼渣基生物質活性炭的影響

    Table  4.   Effect of the fineness of special steel slag ultrafine powder on steel-slag-based biomass-activated carbon

    Fineness
    (mesh)
    Chlorine adsorption capacity in different pressures/%
    0 MPa0.02 MPa0.04 MPa0.08 MPa0.16 MPa0.24 MPa
    40005.159.1719.6325.4732.51
    50005.429.5020.2626.2233.84
    60005.9410.0721.4727.9335.16
    70005.9510.1521.8028.2535.22
    80006.0310.2321.9528.5635.91
    下載: 導出CSV

    表  5  特殊鋼渣超微粉的均勻性

    Table  5.   Uniformity of special steel slag

    Fineness (mesh)d10d50d90d90/d10(d90 ? d10)/d50
    4007.4917.6533.094.421.45
    5004.3111.1123.975.561.77
    6003.219.6922.897.132.03
    70010.3415.1621.952.120.77
    8006.0010.7817.622.941.08
    下載: 導出CSV

    表  6  吸附環境溫度對鋼渣基生物質活性炭的影響

    Table  6.   Effect of adsorption ambient temperature on steel-slag-based biomass-activated carbon

    Adsorption ambient temperature/
    Chlorine adsorption capacity in different pressure/%
    0 MPa0.02 MPa0.04 MPa0.08 MPa0.16 MPa0.24 MPa
    2006.0210.6022.8628.4736.34
    3005.9410.0721.4727.9335.16
    4005.319.8319.8425.3232.40
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Li J F, Zhang B, Liu W M. A typical small-scale chlorine leak and dispersion simulation in industrial facilities. Int J Energy Environ, 2011, 2(6): 1039
    [2] Zhang H. Cu?Ce/TiO2 moisture performance based on photocatalytic performance. J Mater Eng, 2018, 46(1): 114 doi: 10.11868/j.issn.1001-4381.2016.001100

    張浩. 基于光催化性能的Cu?Ce/TiO2濕性能. 材料工程, 2018, 46(1):114 doi: 10.11868/j.issn.1001-4381.2016.001100
    [3] Zhang H, Huang X J, Zong Z F, et al. Optimization of preparation program for biomass based porous active carbon by response surface methodology based on adsorptive property. J Mater Eng, 2017, 45(6): 67 doi: 10.11868/j.issn.1001-4381.2016.000979

    張浩, 黃新杰, 宗志芳, 等. 基于吸附性能的生物質基多孔活性炭制備方案的響應面法優化. 材料工程, 2017, 45(6):67 doi: 10.11868/j.issn.1001-4381.2016.000979
    [4] Zhang H, Fang Y. Temperature dependent photoluminescence of surfactant assisted electrochemically synthesized ZnSe nanostructures. J Alloys Compd, 2019, 781: 201 doi: 10.1016/j.jallcom.2018.11.375
    [5] Ding A W. A theoretical model of public response to the homeland security advisory system. J Defense Model Simul, 2006, 3(1): 45 doi: 10.1177/875647930600300105
    [6] Hsu N Y, Chen P Y, Chang H W, et al. Changes in profiles of airborne fungi in flooded homes in southern Taiwan after Typhoon Morakot. Sci Total Environ, 2011, 409(9): 1677 doi: 10.1016/j.scitotenv.2011.01.042
    [7] Zhang X L, Zhang Y, Wang S S, et al. Effect of activation agents on the surface chemical properties and desulphurization performance of activated carbon. Sci China Technol Sci, 2010, 53(9): 2515 doi: 10.1007/s11431-010-4058-5
    [8] Sun Y, Webley P A. Preparation of activated carbons from corncob with large specific surface area by a variety of chemical activators and their application in gas storage. Chem Eng J, 2010, 162(3): 883 doi: 10.1016/j.cej.2010.06.031
    [9] Zhang H. Study on preparation mechanism and property of biomass environmental coordination function material with Fourier transform infrared spectrum. Spectrosc Spectr Anal, 2017, 37(2): 412

    張浩. 基于傅里葉紅外光譜的生物質環境協調功能材料制備機理及性能研究. 光譜學與光譜分析, 2017, 37(2):412
    [10] Sun K, Jiang J C. Preparation and characterization of activated carbon from rubber-seed shell by physical activation with steam. Biomass Bioenergy, 2010, 34(4): 539 doi: 10.1016/j.biombioe.2009.12.020
    [11] Fang N J, Guo J X, Shu S, et al. Influence of textures, oxygen-containing functional groups and metal species on SO2 and NO removal over Ce?Mn/NAC. Fuel, 2017, 202: 328 doi: 10.1016/j.fuel.2017.04.035
    [12] Ding J, Zhong Q, Zhang S L. Catalytic efficiency of iron oxides in decomposition of H2O2, for simultaneous NOX and SO2 removal: Effect of calcination temperature. J Mol Catal A Chem, 2014, 393: 222 doi: 10.1016/j.molcata.2014.06.018
    [13] Ramezanianpour A A, Kazemian A, Moghaddam M A, et al. Studying effects of low-reactivity GGBFS on chloride resistance of conventional and high strength concretes. Mater Struct, 2016, 49(7): 2597 doi: 10.1617/s11527-015-0670-y
    [14] Morel F, Bounor-Legaré V, Espuche E, et al. Surface modification of calcium carbonate nanofillers by fluoro- and alkyl-alkoxysilane: consequences on the morphology, thermal stability and gas barrier properties of polyvinylidene fluoride nanocomposites. Eur Polym J, 2012, 48(5): 919 doi: 10.1016/j.eurpolymj.2012.03.004
    [15] Liu T C. The Highly Effective Technology to Active Steel Slag and Its Application in Green Construct Materials [Dissertation]. Changsha: Central South University, 2008

    劉天成. 鋼渣高效活化及在綠色建材中的應用[學位論文]. 長沙: 中南大學, 2008
    [16] Zhang Z H, Liao J L, Ju J T, et al. Treatment process and utilization technology of steel slag in China and abroad. J Iron Steel Res, 2013, 25(7): 1

    張朝暉, 廖杰龍, 巨建濤, 等. 鋼渣處理工藝與國內外鋼渣利用技術. 鋼鐵研究學報, 2013, 25(7):1
    [17] Murri A N, Rickard W D A, Bignozzi M C, et al. High temperature behaviour of ambient cured alkali-activated materials based on ladle slag. Cem Concr Res, 2013, 43: 51 doi: 10.1016/j.cemconres.2012.09.011
    [18] Zhang H, Xu Y D, Zhang L, et al. Preparation of steel slag modified activated carbon and its formaldehyde degradation performance. Chin J Process Eng, 2019, 19(6): 1228 doi: 10.12034/j.issn.1009-606X.219132

    張浩, 徐遠迪, 張磊, 等. 鋼渣改性活性炭的制備及其降解甲醛性能. 過程工程學報, 2019, 19(6):1228 doi: 10.12034/j.issn.1009-606X.219132
    [19] Chuang K H, Lu C Y, Wey M Y, et al. NO removal by activated carbon-supported copper catalysts prepared by impregnation, polyol, and microwave heated polyol processes. Appl Catal A, 2011, 397(1-2): 234 doi: 10.1016/j.apcata.2011.03.003
    [20] Zhang H, Yang G, Liu X Y, et al. Influences of steel slag powder on anaerobic fermentation of cattle manure for biogas yield. Non-Metallic Mines, 2016, 39(5): 45 doi: 10.3969/j.issn.1000-8098.2016.05.015

    張浩, 楊剛, 劉秀玉, 等. 鋼渣微粉對牛糞厭氧發酵產沼氣的影響. 非金屬礦, 2016, 39(5):45 doi: 10.3969/j.issn.1000-8098.2016.05.015
    [21] Wang H J, Xiao W Q, Xue J W, et al. Chlorine adsorption properties of activated carbon. Shanxi Chem Ind, 2010, 30(3): 1 doi: 10.3969/j.issn.1004-7050.2010.03.001

    王慧娟, 肖偉強, 薛建偉, 等. 活性炭吸附氯氣的性能研究. 山西化工, 2010, 30(3):1 doi: 10.3969/j.issn.1004-7050.2010.03.001
    [22] Lee J, Kim J, Hyeon T. Recent progress in the synthesis of porous carbon materials. Adv Mater, 2006, 18(6): 2073
    [23] Zhang H, Fang Y. Temperature dependent photoluminescence of surfactant assisted electrochemically synthesized ZnSe nanostructures. J Alloys Compd, 2019, 781: 201
    [24] Zhang H. Preparation of ecological activated carbon based on steel slag-modified biomass waste material and its formaldehyde degradation performance. Chin J Eng, 2020, 42(2): 172

    張浩. 鋼渣改性生物質廢棄材料制備生態活性炭及其降解甲醛性能. 工程科學學報, 2020, 42(2):172
    [25] Han B, Zhou M H, Rong D. Preparation and characterization of activated carbon from rice straw. J Agro-Environ Sci, 2009, 28(4): 828 doi: 10.3321/j.issn:1672-2043.2009.04.034

    韓彬, 周美華, 榮達. 稻草秸稈活性炭的制備及其表征. 農業環境科學學報, 2009, 28(4):828 doi: 10.3321/j.issn:1672-2043.2009.04.034
  • 加載中
圖(2) / 表(6)
計量
  • 文章訪問數:  981
  • HTML全文瀏覽量:  353
  • PDF下載量:  44
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-08-04
  • 網絡出版日期:  2020-11-13
  • 刊出日期:  2021-07-01

目錄

    /

    返回文章
    返回