<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

空間機械臂在軌插、拔孔操作基于力/位姿跟蹤指數型阻抗控制

曾晨東 陳力

曾晨東, 陳力. 空間機械臂在軌插、拔孔操作基于力/位姿跟蹤指數型阻抗控制[J]. 工程科學學報, 2022, 44(2): 254-264. doi: 10.13374/j.issn2095-9389.2020.07.31.002
引用本文: 曾晨東, 陳力. 空間機械臂在軌插、拔孔操作基于力/位姿跟蹤指數型阻抗控制[J]. 工程科學學報, 2022, 44(2): 254-264. doi: 10.13374/j.issn2095-9389.2020.07.31.002
ZENG Chen-dong, CHEN Li. Exponential impedance control based on force/pose tracking for orbit insertion and extraction operation by space manipulator[J]. Chinese Journal of Engineering, 2022, 44(2): 254-264. doi: 10.13374/j.issn2095-9389.2020.07.31.002
Citation: ZENG Chen-dong, CHEN Li. Exponential impedance control based on force/pose tracking for orbit insertion and extraction operation by space manipulator[J]. Chinese Journal of Engineering, 2022, 44(2): 254-264. doi: 10.13374/j.issn2095-9389.2020.07.31.002

空間機械臂在軌插、拔孔操作基于力/位姿跟蹤指數型阻抗控制

doi: 10.13374/j.issn2095-9389.2020.07.31.002
基金項目: 國家自然科學基金資助項目(11372273);福建省工業機器人基礎部件技術重大研發平臺資助項目(2014H21010011)
詳細信息
    通訊作者:

    E-mail: chnle@fzu.edu.cn

  • 中圖分類號: TP242

Exponential impedance control based on force/pose tracking for orbit insertion and extraction operation by space manipulator

More Information
  • 摘要: 討論了空間機械臂在軌插、拔孔操作的阻抗控制問題。為此,結合系統動量守恒關系,空間機械臂替換部件末端輸出插、拔孔主動力與孔內所受摩擦阻力作用關系,以及第二類拉格朗日方程,推導得到了載體位置、姿態均不受控制情況下,空間機械臂在軌插、拔孔操作過程系統動力學方程。同時,根據相關操作控制系統設計需要,利用系統位置幾何關系分析、建立了空間機械臂替換部件末端相對基聯坐標系的相對運動雅可比關系。之后,由空間機械臂替換部件末端位姿與末端輸出插、拔孔主動力之間的動態關系并結合阻抗控制原理,建立了二階線性阻抗模型。在上述工作基礎上,針對空間機械臂在軌插、拔孔操作過程同時存在運動學與動力學不確定性的情況,設計了空間機械臂替換部件末端力/位姿跟蹤指數型阻抗控制策略;并通過李雅普諾夫理論,證明了控制系統的穩定性。提到的控制策略具有結構簡單、收斂速度快、穩定性好的特點。系統數值仿真,驗證了上述控制策略的有效性。

     

  • 圖  1  空間機械臂在軌插、拔孔操作模型

    Figure  1.  Model of space manipulator orbit insertion and extraction operation

    圖  2  阻抗控制流程

    Figure  2.  Impedance control process

    圖  3  替換部件末端插孔軌跡

    Figure  3.  Trajectory of the end of the replacement parts

    圖  6  替換部件末端姿態角

    Figure  6.  Attitude angle of the end of the replacement parts

    圖  4  替換部件末端插孔深度

    Figure  4.  Depth of the end of the replacement parts

    圖  5  替換部件末端輸出力

    Figure  5.  Output force of the end of the replacement parts

    圖  7  替換部件末端插孔軌跡

    Figure  7.  Trajectory of the end of the replacement parts

    圖  10  替換部件末端姿態角

    Figure  10.  Attitude angle of the end of the replacement parts

    圖  8  替換部件末端插孔深度

    Figure  8.  Depth of the end of the replacement parts

    圖  9  替換部件末端輸出力

    Figure  9.  Output force of the end of the replacement parts

    圖  11  替換部件末端拔孔軌跡

    Figure  11.  Trajectory of the end of the replacement parts

    圖  14  替換部件末端姿態角

    Figure  14.  Attitude angle of the end of the replacement parts

    圖  12  替換部件末端拔孔深度

    Figure  12.  Depth of the end of the replacement parts

    圖  13  替換部件末端輸出力

    Figure  13.  Output force of the end of the replacement parts

    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Ichter B, Pavone M. Robot motion planning in learned latent spaces. IEEE Rob Autom Lett, 2019, 4(3): 2407 doi: 10.1109/LRA.2019.2901898
    [2] Flores-Abad A, Zhang L, Wei Z, et al. Optimal capture of a tumbling object in orbit using a space manipulator. J Intell Rob Syst, 2017, 86(2): 199 doi: 10.1007/s10846-016-0417-1
    [3] Keppler M, Lakatos D, Ott C, et al. Elastic structure preserving (EPS) control for compliantly actuated robots. IEEE Trans Rob, 2018, 34(2): 317 doi: 10.1109/TRO.2017.2776314
    [4] Al-Isawi M M A, Sasiadek J Z. Guidance and control of a robot capturing an uncooperative space target. J Intell Rob Syst, 2019, 93(3): 713
    [5] Peng J Q, Xu W F, Pan E Z, et al. Dual-arm coordinated capturing of an unknown tumbling target based on efficient parameters estimation. Acta Astron, 2019, 162: 589 doi: 10.1016/j.actaastro.2019.03.008
    [6] Giordano A M, Ott C, Albu-Sch?ffer A. Coordinated control of spacecraft’s attitude and end-effector for space robots. IEEE Rob Autom Lett, 2019, 4(2): 2108 doi: 10.1109/LRA.2019.2899433
    [7] Gangapersaud R A, Liu G J, de Ruiter A H J. Detumbling of a non-cooperative target with unknown inertial parameters using a space robot. Adv Space Res, 2019, 63(12): 3900 doi: 10.1016/j.asr.2019.03.002
    [8] Zhang N, Gai W D, Zhang G L, et al. An active disturbance rejection control guidance law based collision avoidance for unmanned aerial vehicles. Aerospace Sci Technol, 2018, 77: 658 doi: 10.1016/j.ast.2018.03.048
    [9] Nokleby S B. Singularity analysis of the Canadarm2. Mech Mach Theory, 2007, 42(4): 442 doi: 10.1016/j.mechmachtheory.2006.04.004
    [10] Freund E, Rossmann J. Multimedia and virtual reality techniques for the control of ERA, the first free flying robot in space // Proceedings of the 2001 IEEE International Conference on Robotics and Automation. Seoul, 2001: 1921
    [11] Fukazu Y, Hara N, Kanamiya Y, et al. Reactionless resolved acceleration control with vibration suppression capability for JEMRMS/SFA // IEEE International Conference on Robotics and Biomimetics. Bangkok, 2009: 1359
    [12] Debus T J, Dougherty S P. Overview and performance of the front-end robotics enabling near-term demonstration (FREND) robotic arm // AIAA Infotech @ Aerospace Conference. Seattle, 2009: 1870
    [13] Barnhart D, Sullivan B, Hunter R, et al. Phoenix project status 2013 // AIAA Space 2013 Conference and Exposition. San Diego, 2013: 1
    [14] Reintsema D, Thaeter J, Rathke A, et al. DEOS the German robotics approach to secure and de-orbit malfunctioned satellites from low earth orbits // 10th International Symposium on Artificial Intelligence, Robotics and Automation in Space. Sapporo, 2010: 244
    [15] Cheng J, Chen L. Mechanical analysis and calm control of dual-arm space robot for capturing a satellite. Chin J Theor Appl Mech, 2016, 48(4): 832 doi: 10.6052/0459-1879-16-156

    程靖, 陳力. 空間機器人雙臂捕獲衛星力學分析及鎮定控制. 力學學報, 2016, 48(4):832 doi: 10.6052/0459-1879-16-156
    [16] Yoshida K, Nakanishi H, Ueno H, et al. Dynamics control and impedance matching for robotic capture of a non-cooperative satellite. Adv Rob, 2004, 18(2): 175 doi: 10.1163/156855304322758015
    [17] Huang P F, Wang M, Meng Z J, et al. Attitude takeover control for post-capture of target spacecraft using space robot. Aerospace Sci Technol, 2016, 51: 171 doi: 10.1016/j.ast.2016.02.006
    [18] Xie L M, Chen L. Robust and adaptive composite control of space manipulator system with bounded torque inputs. Eng Mech, 2013, 30(3): 371

    謝立敏, 陳力. 輸入力矩受限情況下漂浮基空間機械臂的魯棒自適應混合控制. 工程力學, 2013, 30(3):371
    [19] Gasbarri P, Pisculli A. Dynamic/control interactions between flexible orbiting space-robot during grasping, docking and post-docking manoeuvres. Acta Astron, 2015, 110: 225 doi: 10.1016/j.actaastro.2015.01.024
    [20] Hogan N. Stable execution of contact tasks using impedance control // IEEE International Conference on Robotics and Automation. Raleigh, 1987: 1047
    [21] Nanos K, Papadopoulos E G. On the dynamics and control of flexible joint space manipulators. Control Eng Pract, 2015, 45: 230 doi: 10.1016/j.conengprac.2015.06.009
    [22] Fu X D, Chen L. An input limited repetitive learning control of flexible-base two-flexible-link and two-flexible-joint space robot with integration of motion and vibration. Chin J Theor Appl Mech, 2020, 52(1): 171 doi: 10.6052/0459-1879-19-289

    付曉東, 陳力. 全柔性空間機器人運動振動一體化輸入受限重復學習控制. 力學學報, 2020, 52(1):171 doi: 10.6052/0459-1879-19-289
    [23] Wang M M, Luo J J, Yuan J P, et al. Detumbling strategy and coordination control of kinematically redundant space robot after capturing a tumbling target. Nonlinear Dyn, 2018, 92(3): 1023 doi: 10.1007/s11071-018-4106-4
    [24] Luo J J, Wei C S, Dai H H, et al. Robust inertia-free attitude takeover control of post capture combined spacecraft with guaranteed prescribed performance. ISA Trans, 2018, 74: 28 doi: 10.1016/j.isatra.2018.01.016
    [25] Xiao B, Yin S. Velocity-free fault-tolerant and uncertainty attenuation control for a class of nonlinear systems. IEEE Trans Ind Electron, 2016, 63(7): 4400 doi: 10.1109/TIE.2016.2532284
    [26] Islam S, Liu X P. Robust sliding mode control for robot manipulators. IEEE Trans Ind Electron, 2011, 58(6): 2444 doi: 10.1109/TIE.2010.2062472
  • 加載中
圖(14)
計量
  • 文章訪問數:  1169
  • HTML全文瀏覽量:  347
  • PDF下載量:  55
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-07-31
  • 網絡出版日期:  2020-09-25
  • 刊出日期:  2022-02-15

目錄

    /

    返回文章
    返回