Real-time SOC co-estimation algorithm for Li-ion batteries based on fast square-root unscented Kalman filters
-
摘要: 針對標準無跡卡爾曼濾波(Unscented Kalman filter, UKF) 算法本身存在著因狀態誤差協方差矩陣無法實現Cholesky分解而導致濾波發散的隱患,以及在電池狀態估計過程中由離線標定的電池等效模型參數而造成的累積誤差的問題,本文發展了一種平方根無跡卡爾曼濾波(Square-root unscented Kalman filter, SR-UKF)算法,并設計了一種電池狀態聯合估計策略。首先快速SR-UKF算法通過對觀測方程進行準線性化處理,降低了每次無跡變換時的計算開銷;然后在迭代過程中,用狀態誤差協方差矩陣的平方根代替狀態誤差協方差矩陣,該平方根是由QR分解與 Cholesky因子的一階更新得到,解決了UKF 算法迭代過程中可能由計算累積誤差引起狀態誤差協方差矩陣負定而導致濾波結果發散的問題,保證了電池荷電狀態(State of charge,SOC)在線滾動估計的數值穩定性;最后采用聯合估計策略,對電池等效模型參數進行實時辨識,保證了電池等效模型的準確性與有效性,從而提高了電池SOC的估計精度。仿真對比結果驗證了快速SR-UKF算法以及電池狀態聯合估計策略的可行性與魯棒性。
-
關鍵詞:
- 荷電狀態 /
- 健康狀態 /
- 平方根無跡卡爾曼濾波 /
- 聯合估計 /
- 鋰離子動力電池
Abstract: The Li-ion battery is an important energy source for electric vehicles (EVs), and the accurate estimation of the battery power state provides a reliable reference for balancing the battery packing and battery management system (BMS). It also has great practical significance for making full and reasonable utilization of batteries, and improving the battery life cycle and vehicle operation efficiency. Practical issues that must be addressed include the filtering divergence caused by the non-positive definite error covariance matrix in the standard unscented Kalman filter (UKF) and the state estimation errors that accumulate from the simplified mathematical modeling of the Li-ion battery, with its inherently strong non-linearity, time variation, and uncertainty. To resolve these issues, in this article, a real-time state co-estimation algorithm was proposed based on a fast square-root unscented Kalman filter (SR-UKF) framework. First, during the iteration process, the non-linear measurement function, which describes the propagation of each sigma point, is called by an unscented transform. A reduction in computational complexity can be achieved if the non-linear measurement function is quasi-linearized. Second, instead of a state error covariance matrix, the square root of the state error covariance matrix is used, which is obtained by QR decomposition and first-order updating of the Cholesky factor. This step deals with the problem that arises if the state error covariance matrix is negative definite due to the computational errors accumulated while performing recursive estimation with the standard UKF. This guarantees the numerical stability of the battery’s estimated state of charge (SOC) in real time. Third, the inner ohmic resistance and nominal capacity that indirectly characterize the state of health can be estimated online, and a highly precise SOC estimation can be realized due to the accuracy and efficiency of the battery model. Comparative experimental results confirm and validate the feasibility and robustness of the proposed fast SR-UKF algorithm and co-estimation strategy. -
表 1 基于二階RC網絡的模型參數
Table 1. Parameters of 2nd-order RC model
Re/mΩ Rs/mΩ Rl/mΩ Q0/(A·h) Cs/F Cl /F 5.9 2.0 3.8 29.3 36000 68400 www.77susu.com -
參考文獻
[1] Zhang H K, Wang Y F, Qi H, et al. Active battery equalization method based on redundant battery for electric vehicles. IEEE Trans Veh Technol, 2019, 68(8): 7531 doi: 10.1109/TVT.2019.2925742 [2] An F Q, Zhao H L, Chen Z, et al. Development status and research progress of power battery for pure electric vehicles. Chin J Eng, 2019, 41(1): 22安富強, 趙洪量, 程志, 等. 純電動車用鋰離子電池發展現狀與研究進展. 工程科學學報, 2019, 41(1):22 [3] Afshar S, Morris K, Khajepour A. State-of-charge estimation using an EKF-based adaptive observer. IEEE Trans Control Syst Technol, 2019, 27(5): 1907 doi: 10.1109/TCST.2018.2842038 [4] Petzl M, Danzer M A. Advancements in OCV measurement and analysis for lithium-ion batteries. IEEE Trans Energy Convers, 2013, 28(3): 675 doi: 10.1109/TEC.2013.2259490 [5] Xiong R, Zhang Y Z, He H W, et al. A double-scale, particle-filtering, energy state prediction algorithm for lithium-ion batteries. IEEE Trans Ind Electron, 2018, 65(2): 1526 doi: 10.1109/TIE.2017.2733475 [6] Partovibakhsh M, Liu G J. An adaptive unscented Kalman filtering approach for online estimation of model parameters and state-of-charge of lithium-ion batteries for autonomous mobile robots. IEEE Trans Control Syst Technol, 2015, 23(1): 357 doi: 10.1109/TCST.2014.2317781 [7] Chaoui H, Ibe-Ekeocha C C. State of charge and state of health estimation for lithium batteries using recurrent neural networks. IEEE Trans Veh Technol, 2017, 66(10): 8773 doi: 10.1109/TVT.2017.2715333 [8] Wu J, Zhang C B, Chen Z H. An online method for lithium-ion battery remaining useful life estimation using importance sampling and neural networks. Appl Energy, 2016, 173: 134 doi: 10.1016/j.apenergy.2016.04.057 [9] Chun C Y, Cho B H, Kim J. Implementation of discharging/charging current sensorless state-of-charge estimator reflecting cell-to-cell variations in lithium-ion series battery packs. Int J Automot Technol, 2016, 17(5): 909 doi: 10.1007/s12239-016-0088-8 [10] Weng C H, Sun J, Peng H. A unified open-circuit-voltage model of lithium-ion batteries for state-of-charge estimation and state-of-health monitoring. J Power Sources, 2014, 258: 228 doi: 10.1016/j.jpowsour.2014.02.026 [11] Lavigne L, Sabatier J, Francisco J M, et al. Lithium-ion open circuit voltage (OCV) curve modelling and its ageing adjustment. J Power Sources, 2016, 324: 694 doi: 10.1016/j.jpowsour.2016.05.121 [12] Paschero M, Storti G L, Rizzi A, et al. A novel mechanical analogy-based battery model for SoC estimation using a multi-cell EKF. IEEE Trans Sustainable Energy, 2016, 7(4): 1695 doi: 10.1109/TSTE.2016.2574755 [13] Zhang J H, Li Q, Chen D P, et al. State Co-estimation algorithm for li-ion power batteries based on adaptive unscented kalman filters. J Northeast Univ Nat Sci, 2020, 41(11): 1557章軍輝, 李慶, 陳大鵬, 等. 基于自適應UKF的鋰離子動力電池狀態聯合估計. 東北大學學報(自然科學版), 2020, 41(11):1557 [14] Wang D, Yang F F, Tsui K L, et al. Remaining useful life prediction of lithium-ion batteries based on spherical cubature particle filter. IEEE Trans Instrum Meas, 2016, 65(6): 1282 doi: 10.1109/TIM.2016.2534258 [15] Takeno K, Ichimura M, Takano K, et al. Quick testing of batteries in lithium-ion battery packs with impedance-measuring technology. J Power Sources, 2004, 128(1): 67 doi: 10.1016/j.jpowsour.2003.09.045 [16] Abraham D P, Knuth J L, Dees D W, et al. Performance degradation of high-power lithium-ion cells: electrochemistry of harvested electrodes. J Power Sources, 2007, 170(2): 465 doi: 10.1016/j.jpowsour.2007.03.071 [17] Klass V, Behm M, Lindbergh G. A support vector machine-based state-of-health estimation method for lithium-ion batteries under electric vehicle operation. J Power Sources, 2014, 270: 262 doi: 10.1016/j.jpowsour.2014.07.116 [18] El Mejdoubi A, Chaoui H, Gualous H, et al. Lithium-ion batteries health prognosis considering aging conditions. IEEE Trans Power Electron, 2019, 34(7): 6834 doi: 10.1109/TPEL.2018.2873247 [19] Van der Merwe R, Wan E A. The square-root unscented Kalman filter for state and parameter-estimation // Proceedings of 2001 IEEE International Conference on Acoustics, Speech and Signal Processing. Salt Lake City, 2001: 3461 [20] Aung H, Low K S, Goh S T. State-of-charge estimation of lithium-ion battery using square root spherical unscented Kalman filter (Sqrt-UKFST) in nanosatellite. IEEE Trans Power Electron, 2015, 30(9): 4774 doi: 10.1109/TPEL.2014.2361755 [21] Gholizade-Narm H, Charkhgard M. Lithium-ion battery state of charge estimation based on square-root unscented Kalman filter. IET Power Electron, 2013, 6(9): 1833 doi: 10.1049/iet-pel.2012.0706 [22] Lin H T, Liang T J, Chen S M. Estimation of battery state of health using probabilistic neural network. IEEE Trans Ind Inf, 2013, 9(2): 679 doi: 10.1109/TII.2012.2222650 [23] Kim J, Cho B H. State-of-charge estimation and state-of-health prediction of a Li-ion degraded battery based on an EKF combined with a per-unit system. IEEE Trans Veh Technol, 2011, 60(9): 4249 doi: 10.1109/TVT.2011.2168987 [24] Shen J N, Shen J J, He Y J, et al. Accurate state of charge estimation with model mismatch for Li-ion batteries: a joint moving horizon estimation approach. IEEE Trans Power Electron, 2019, 34(5): 4329 doi: 10.1109/TPEL.2018.2861730 [25] Yu Q Q, Xiong R, Lin C, et al. Lithium-ion battery parameters and state-of-charge joint estimation based on H-infinity and unscented Kalman filters. IEEE Trans Veh Technol, 2017, 66(10): 8693 doi: 10.1109/TVT.2017.2709326 -