<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

基于快速SR-UKF的鋰離子動力電池SOC聯合估計

章軍輝 李慶 陳大鵬 趙野

章軍輝, 李慶, 陳大鵬, 趙野. 基于快速SR-UKF的鋰離子動力電池SOC聯合估計[J]. 工程科學學報, 2021, 43(7): 976-984. doi: 10.13374/j.issn2095-9389.2020.07.30.002
引用本文: 章軍輝, 李慶, 陳大鵬, 趙野. 基于快速SR-UKF的鋰離子動力電池SOC聯合估計[J]. 工程科學學報, 2021, 43(7): 976-984. doi: 10.13374/j.issn2095-9389.2020.07.30.002
ZHANG Jun-hui, LI Qing, CHEN Da-peng, ZHAO Ye. Real-time SOC co-estimation algorithm for Li-ion batteries based on fast square-root unscented Kalman filters[J]. Chinese Journal of Engineering, 2021, 43(7): 976-984. doi: 10.13374/j.issn2095-9389.2020.07.30.002
Citation: ZHANG Jun-hui, LI Qing, CHEN Da-peng, ZHAO Ye. Real-time SOC co-estimation algorithm for Li-ion batteries based on fast square-root unscented Kalman filters[J]. Chinese Journal of Engineering, 2021, 43(7): 976-984. doi: 10.13374/j.issn2095-9389.2020.07.30.002

基于快速SR-UKF的鋰離子動力電池SOC聯合估計

doi: 10.13374/j.issn2095-9389.2020.07.30.002
基金項目: 江蘇省博士后科研計劃資助項目(2020Z411);國家重點研發計劃“新能源汽車專項”資助項目(2016YFB0100516)
詳細信息
    通訊作者:

    E-mail:zhangjunhui@ime.ac.cn

  • 中圖分類號: TM912.9

Real-time SOC co-estimation algorithm for Li-ion batteries based on fast square-root unscented Kalman filters

More Information
  • 摘要: 針對標準無跡卡爾曼濾波(Unscented Kalman filter, UKF) 算法本身存在著因狀態誤差協方差矩陣無法實現Cholesky分解而導致濾波發散的隱患,以及在電池狀態估計過程中由離線標定的電池等效模型參數而造成的累積誤差的問題,本文發展了一種平方根無跡卡爾曼濾波(Square-root unscented Kalman filter, SR-UKF)算法,并設計了一種電池狀態聯合估計策略。首先快速SR-UKF算法通過對觀測方程進行準線性化處理,降低了每次無跡變換時的計算開銷;然后在迭代過程中,用狀態誤差協方差矩陣的平方根代替狀態誤差協方差矩陣,該平方根是由QR分解與 Cholesky因子的一階更新得到,解決了UKF 算法迭代過程中可能由計算累積誤差引起狀態誤差協方差矩陣負定而導致濾波結果發散的問題,保證了電池荷電狀態(State of charge,SOC)在線滾動估計的數值穩定性;最后采用聯合估計策略,對電池等效模型參數進行實時辨識,保證了電池等效模型的準確性與有效性,從而提高了電池SOC的估計精度。仿真對比結果驗證了快速SR-UKF算法以及電池狀態聯合估計策略的可行性與魯棒性。

     

  • 圖  1  鋰離子動力電池的二階RC等效模型

    Figure  1.  2nd-order RC model of Li-ion battery

    圖  2  一個脈沖放電周期內單體端電壓響應曲線

    Figure  2.  Dynamic curve of Uo in a pulse-periodic discharge

    圖  3  開路電壓與SOC的關系曲線

    Figure  3.  Relationship between open circuit voltage and SOC

    圖  4  電池SOC、SOH聯合估計策略

    Figure  4.  SOC and SOH co-estimation strategy

    圖  5  SR-UKF聯合估計與標準UKF估計曲線對比

    Figure  5.  Comparison of SR-UKF and UKF estimations

    圖  6  SR-UKF聯合估計與標準UKF估計誤差曲線對比

    Figure  6.  Comparison of SR-UKF and UKF estimation errors

    圖  7  SOC初值標定偏差為5%情況下的SOC估計曲線對比

    Figure  7.  Comparison of SOC estimations when the calibration deviation of initial SOC value is 5%

    圖  8  電池內阻估計曲線

    Figure  8.  Comparison of li-ion battery inner resistances

    圖  9  放電過程中端電壓的峰谷壓差曲線

    Figure  9.  Peak–valley difference in terminal voltage during discharge process

    圖  10  試驗車的電流工況

    Figure  10.  Currency curve of test vehicle

    圖  11  SOC初值標定偏差為4%情況下的SOC估計曲線對比

    Figure  11.  Comparison of SOC estimations when the calibration deviation of initial SOC value is 4%

    表  1  基于二階RC網絡的模型參數

    Table  1.   Parameters of 2nd-order RC model

    Re/mΩRs/mΩRl/mΩQ0/(A·h)Cs/FCl /F
    5.92.03.829.33600068400
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Zhang H K, Wang Y F, Qi H, et al. Active battery equalization method based on redundant battery for electric vehicles. IEEE Trans Veh Technol, 2019, 68(8): 7531 doi: 10.1109/TVT.2019.2925742
    [2] An F Q, Zhao H L, Chen Z, et al. Development status and research progress of power battery for pure electric vehicles. Chin J Eng, 2019, 41(1): 22

    安富強, 趙洪量, 程志, 等. 純電動車用鋰離子電池發展現狀與研究進展. 工程科學學報, 2019, 41(1):22
    [3] Afshar S, Morris K, Khajepour A. State-of-charge estimation using an EKF-based adaptive observer. IEEE Trans Control Syst Technol, 2019, 27(5): 1907 doi: 10.1109/TCST.2018.2842038
    [4] Petzl M, Danzer M A. Advancements in OCV measurement and analysis for lithium-ion batteries. IEEE Trans Energy Convers, 2013, 28(3): 675 doi: 10.1109/TEC.2013.2259490
    [5] Xiong R, Zhang Y Z, He H W, et al. A double-scale, particle-filtering, energy state prediction algorithm for lithium-ion batteries. IEEE Trans Ind Electron, 2018, 65(2): 1526 doi: 10.1109/TIE.2017.2733475
    [6] Partovibakhsh M, Liu G J. An adaptive unscented Kalman filtering approach for online estimation of model parameters and state-of-charge of lithium-ion batteries for autonomous mobile robots. IEEE Trans Control Syst Technol, 2015, 23(1): 357 doi: 10.1109/TCST.2014.2317781
    [7] Chaoui H, Ibe-Ekeocha C C. State of charge and state of health estimation for lithium batteries using recurrent neural networks. IEEE Trans Veh Technol, 2017, 66(10): 8773 doi: 10.1109/TVT.2017.2715333
    [8] Wu J, Zhang C B, Chen Z H. An online method for lithium-ion battery remaining useful life estimation using importance sampling and neural networks. Appl Energy, 2016, 173: 134 doi: 10.1016/j.apenergy.2016.04.057
    [9] Chun C Y, Cho B H, Kim J. Implementation of discharging/charging current sensorless state-of-charge estimator reflecting cell-to-cell variations in lithium-ion series battery packs. Int J Automot Technol, 2016, 17(5): 909 doi: 10.1007/s12239-016-0088-8
    [10] Weng C H, Sun J, Peng H. A unified open-circuit-voltage model of lithium-ion batteries for state-of-charge estimation and state-of-health monitoring. J Power Sources, 2014, 258: 228 doi: 10.1016/j.jpowsour.2014.02.026
    [11] Lavigne L, Sabatier J, Francisco J M, et al. Lithium-ion open circuit voltage (OCV) curve modelling and its ageing adjustment. J Power Sources, 2016, 324: 694 doi: 10.1016/j.jpowsour.2016.05.121
    [12] Paschero M, Storti G L, Rizzi A, et al. A novel mechanical analogy-based battery model for SoC estimation using a multi-cell EKF. IEEE Trans Sustainable Energy, 2016, 7(4): 1695 doi: 10.1109/TSTE.2016.2574755
    [13] Zhang J H, Li Q, Chen D P, et al. State Co-estimation algorithm for li-ion power batteries based on adaptive unscented kalman filters. J Northeast Univ Nat Sci, 2020, 41(11): 1557

    章軍輝, 李慶, 陳大鵬, 等. 基于自適應UKF的鋰離子動力電池狀態聯合估計. 東北大學學報(自然科學版), 2020, 41(11):1557
    [14] Wang D, Yang F F, Tsui K L, et al. Remaining useful life prediction of lithium-ion batteries based on spherical cubature particle filter. IEEE Trans Instrum Meas, 2016, 65(6): 1282 doi: 10.1109/TIM.2016.2534258
    [15] Takeno K, Ichimura M, Takano K, et al. Quick testing of batteries in lithium-ion battery packs with impedance-measuring technology. J Power Sources, 2004, 128(1): 67 doi: 10.1016/j.jpowsour.2003.09.045
    [16] Abraham D P, Knuth J L, Dees D W, et al. Performance degradation of high-power lithium-ion cells: electrochemistry of harvested electrodes. J Power Sources, 2007, 170(2): 465 doi: 10.1016/j.jpowsour.2007.03.071
    [17] Klass V, Behm M, Lindbergh G. A support vector machine-based state-of-health estimation method for lithium-ion batteries under electric vehicle operation. J Power Sources, 2014, 270: 262 doi: 10.1016/j.jpowsour.2014.07.116
    [18] El Mejdoubi A, Chaoui H, Gualous H, et al. Lithium-ion batteries health prognosis considering aging conditions. IEEE Trans Power Electron, 2019, 34(7): 6834 doi: 10.1109/TPEL.2018.2873247
    [19] Van der Merwe R, Wan E A. The square-root unscented Kalman filter for state and parameter-estimation // Proceedings of 2001 IEEE International Conference on Acoustics, Speech and Signal Processing. Salt Lake City, 2001: 3461
    [20] Aung H, Low K S, Goh S T. State-of-charge estimation of lithium-ion battery using square root spherical unscented Kalman filter (Sqrt-UKFST) in nanosatellite. IEEE Trans Power Electron, 2015, 30(9): 4774 doi: 10.1109/TPEL.2014.2361755
    [21] Gholizade-Narm H, Charkhgard M. Lithium-ion battery state of charge estimation based on square-root unscented Kalman filter. IET Power Electron, 2013, 6(9): 1833 doi: 10.1049/iet-pel.2012.0706
    [22] Lin H T, Liang T J, Chen S M. Estimation of battery state of health using probabilistic neural network. IEEE Trans Ind Inf, 2013, 9(2): 679 doi: 10.1109/TII.2012.2222650
    [23] Kim J, Cho B H. State-of-charge estimation and state-of-health prediction of a Li-ion degraded battery based on an EKF combined with a per-unit system. IEEE Trans Veh Technol, 2011, 60(9): 4249 doi: 10.1109/TVT.2011.2168987
    [24] Shen J N, Shen J J, He Y J, et al. Accurate state of charge estimation with model mismatch for Li-ion batteries: a joint moving horizon estimation approach. IEEE Trans Power Electron, 2019, 34(5): 4329 doi: 10.1109/TPEL.2018.2861730
    [25] Yu Q Q, Xiong R, Lin C, et al. Lithium-ion battery parameters and state-of-charge joint estimation based on H-infinity and unscented Kalman filters. IEEE Trans Veh Technol, 2017, 66(10): 8693 doi: 10.1109/TVT.2017.2709326
  • 加載中
圖(11) / 表(1)
計量
  • 文章訪問數:  2035
  • HTML全文瀏覽量:  456
  • PDF下載量:  70
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-07-30
  • 網絡出版日期:  2020-09-03
  • 刊出日期:  2021-07-01

目錄

    /

    返回文章
    返回