-
摘要: 為了探究全進口礦條件下褐鐵礦在燒結工藝中的合理配置,實現褐鐵礦的高效利用以進一步提鐵降本,針對S鋼鐵公司500 m2大型燒結機實際原燃料條件,基于試驗用鐵礦粉的常規理化性能和高溫燒結基礎特性開展了不同褐鐵礦配比的燒結杯試驗研究,結合Factsage 7.1熱力學軟件,模擬計算了不同褐鐵礦配比條件下的黏附粉含量和理論液相生成量及性能,并采用礦相顯微鏡分析了燒結礦的顯微結構,探明了褐鐵礦與赤鐵礦和磁鐵礦的優化搭配規律。研究表明:澳大利亞褐鐵礦具有粒度粗、礦化能力弱,同化溫度低、黏結相強度差、吸液性強的特點,當褐鐵礦質量分數由45%增加至55%時,提高磁鐵精礦OD礦的質量分數至15%,同時降低OC礦質量分數至10%,燒結礦轉鼓強度和低溫還原粉化性能等指標達到最優,這是由于一方面提高磁鐵精礦配比不僅具有增加黏附粉比例、改善液相生成數量和性能的作用,而且可以均勻液相分布,消除過熔現象;另一方面,增加磁鐵精礦配比可以改善燒結料球的粒度組成,減少褐鐵礦吸液量,提高燒結礦強度。因此,在高褐鐵礦配比條件下,增加適宜的磁鐵精礦配比有利于穩定燒結礦質量,全面改善燒結礦性能。Abstract: Improvements in ore blending could be realized by an optimal match of iron ores, sinters, and fuel conditions. To further increase iron grade and reduce the cost of ore blending, in view of the actual raw material and fuel conditions of the 500 m2 large-scale sintering machine of S Steel company, the conventional physical and chemical properties of the iron ore powders used and their basic characteristics under high-temperature sintering were studied using sintering cup experiments in this study. The content of the adhesion powder, the theoretical liquid phase formation, and performance with different limonite ratios were simulated and calculated using the FactSage 7.1 software. The microstructures of sinters were also analyzed using a mineral phase microscope. The results show that Australian limonite exhibits coarse particle size, weak mineralization ability, low assimilation temperature, poor bonding phase strength, but strong liquid phase absorption. When the mass fraction of limonite is increased from 45% to 55%, the OD ore mass fraction of the magnetite concentrate is increased to 15% and the mass fraction of the OC ore is reduced to 10%, improving the sinter drum strength and RDI+3.15 mm. When the OD ore ratio of the magnetite concentrate is increased, not only the proportion of adhesion powder is increased, improving the amount and performance of liquid phase formation, but the liquid phase distribution also becomes uniform and overmelting is eliminated. On the other hand, increasing the ratio of the OC ore can improve the particle size composition of the sinter mixture and reduce the amount of liquid phase absorbed by the limonite, thus increasing the strength of the sinter. Therefore, a higher ratio of magnetite concentrate under a high amount of limonite is conducive to stabilizing the sinter quality and improving the overall sinter performance.
-
表 1 燒結用鐵礦粉、熔劑和燃料化學成分
Table 1. Chemical composition of iron ore powder, flux, and fuel for sintering
% Type of raw material and fuel Name of iron ore powder w(TFe) w(SiO2) w(CaO) w(MgO) w(Al2O3) w(S) w(P) LOI Australian limonite OA 61.20 3.70 0.03 0.10 2.50 0.056 0.045 5.0 OB 57.20 6.00 0.02 0.10 1.60 0.114 0.050 10.0 OC 62.30 4.40 0.05 0.10 2.50 0.094 0.006 4.0 Australian magnetite concentrate OD 65.50 7.70 0.18 0.20 0.50 0.021 0.082 — Brazilian hematite OE 65.51 1.70 0.02 0.17 1.15 0.071 0.007 2.0 OF 61.39 6.50 0.10 0.19 1.71 0.034 0.101 2.0 OG 63.05 5.00 0.10 0.11 1.30 0.130 0.201 2.7 Sintering flux Dolomite — 1.20 30.57 20.03 1.500 0.016 — 43.0 Quicklime — 2.50 82.00 4.90 1.500 0.081 — 10.0 Sintering fuel Coke powder w(Fcad): 85.00; w(Ad) : 12.5; w(Vdaf): 1.45; w(St,d): 0.65 Note: w represents mass fraction; LOI represents burning loss; Fcad represents fixed carbon content; Ad represents ash content; Vdaf represents volatile content; St,d represents sulfur content. 表 2 鐵礦粉各粒度組成分布及占比
Table 2. Distribution and proportion of each particle size composition of iron ore powder
Name of iron ore powder Mass fraction of particle size composition/ % Average particle size/ mm +8 mm 5–8 mm 3–5 mm 1–3 mm 0.5–1.0 mm ?0.5 mm Sum ?1 mm +1 mm OA 12.67 23.33 20.00 28.67 3.80 11.53 100 15.33 84.67 4.39 OB 20.00 16.67 17.33 35.33 6.01 4.66 100 10.67 89.33 4.76 OC 6.20 17.43 15.13 22.43 9.62 29.19 100 38.81 61.19 3.14 OD — — — — 12.52 87.48 100 100 0.00 — OE 14.00 12.67 14.00 28.00 10.01 21.32 100 31.33 68.67 3.70 OF 8.33 13.33 16.00 32.00 5.84 24.50 100 30.34 69.66 3.28 OG 13.33 14.00 16.67 31.33 4.98 19.69 100 24.67 75.33 3.84 Note: The average particle size is calculated based on the particle content of +1 mm. 表 3 鐵礦粉液相流動性指數(R=3.0)
Table 3. Liquid phase flowability index of iron ore powder (R = 3.0)
Name of iron ore powder OA OB OC OD OE OF OG Sintering temperature
conditions/ ℃1280 1240 1280 1240 1280 1280 1240 Liquid phase flowability
index (FI)1.64 3.91 4.88 2.06 5.25 4.64 3.00 Note: R represents binary basicity. 表 4 燒結杯配礦方案(質量分數)
Table 4. Ore blending scheme of the sintering cup(mass fraction)
% Experimental scheme No. Configuration scheme of iron ore powder Limonite Hematite Sintering fuel OA OB OC OD OE OF OG (OA+OB+OC) (OE+OF+OG) Coke powder H-1# 10 25 10 15 20 10 10 45 40 4.0 H-2# 5 25 20 10 25 10 5 50 40 4.0 H-3# 5 30 20 10 20 5 10 55 35 4.0 H-4# 5 30 10 15 25 10 5 45 40 4.0 H-5# 5 35 10 15 20 5 10 50 35 4.0 H-6# 10 35 10 10 25 5 5 55 35 4.0 表 5 燒結杯試驗設備參數及工藝控制條件
Table 5. Sintering cup test equipment parameters and process control conditions
Experimental equipment parameters Value Process parameters for blending and mixing granulation of the sinter Value Material thickness/mm 700 Mixing time/min 10 Sintering cup diameter/mm 325 Mass fraction of coke powder in the mixture/% 4.0 Ignition negative pressure/Pa 6000 Mass fraction of of the returned sinter/% 30 Mixer diameter/mm 800 Mass fraction of mixture moisture/% 7?8 Ignition temperature/℃ 850 Granulation time/min 15 表 6 不同配料結構的黏附粉成分計算結果
Table 6. Calculation results of adhesion powder composition with different ore blending structures
Experimental scheme No. Granulating pellets Chemical composition of the melting zone(mass fraction)/ % Basicity, R Mass fraction of adhesive powder/ % Mass fraction of core particle/ % TFe FeO SiO2 CaO MgO Al2O3 H-1# 35.79 64.21 44.88 7.72 5.63 23.29 3.68 1.92 4.13 H-2# 34.75 65.25 44.16 5.79 5.31 24.14 3.78 2.06 4.55 H-3# 34.18 65.82 43.75 5.90 5.34 24.61 3.85 2.08 4.61 H-4# 35.65 64.35 44.82 7.76 5.59 23.40 3.70 1.91 4.19 H-5# 35.09 64.91 44.44 7.90 5.63 23.84 3.76 1.92 4.24 H-6# 33.13 66.87 42.96 6.13 5.33 25.53 3.99 2.07 4.79 表 7 單位質量的黏附粉熔融區液相生成性能計算(1250 ℃)
Table 7. Calculation results of liquid phase formation properties in the molten liquid region of per unit mass of adhesive powder (1250 ℃)
Experimental scheme No. Mass fraction of liquid phase composition/ % Mass fraction of
liquid phase/ %Mass fraction of liquid phase produced by per unit mass of adhesive powder/ % Liquid phase viscosity/ (Pa·s) w(Fe2O3):w(CaO) Al2O3 SiO2 CaO FeO Fe2O3 MgO H-1# 2.63 1.15 23.83 7.97 63.40 1.02 61.64 22.06 0.0256 2.66 H-2# 2.73 1.07 24.46 6.11 64.51 1.13 66.09 22.97 0.0268 2.64 H-3# 2.79 1.05 24.63 6.49 63.87 1.17 62.65 21.41 0.0266 2.59 H-4# 2.59 1.14 23.97 8.11 63.13 1.05 62.01 22.11 0.0252 2.63 H-5# 2.57 1.10 24.35 8.58 62.25 1.15 62.52 21.94 0.0247 2.56 H-6# 2.88 1.04 24.75 7.53 62.56 1.23 51.82 17.17 0.0260 2.53 表 8 燒結礦試樣熔融滴落性能
Table 8. Melting and dripping properties of the sinter samples
Experimental scheme No. T4/ ℃ T10/ ℃ T40/ ℃ TS/ ℃ TD/ ℃ (T40?T4)/ ℃ (T40?T10)/ ℃ (TD?TS)/ ℃ (TD?T10)/ ℃ ?Pmax/ kPa H-1# 1097 1141 1239 1280 1511 142 98 231 370 34.1 H-2# 1075 1123 1229 1273 1481 154 106 208 358 35.4 H-3# 1089 1127 1232 1272 1475 143 105 203 348 28.9 H-4# 1084 1119 1226 1278 1497 142 107 219 378 31.0 H-5# 1098 1132 1229 1284 1506 131 97 222 374 30.4 H-6# 1073 1111 1206 1261 1504 133 95 243 393 25.1 Note:T4— Initial softening temperature; T10—temperature at 10% layer shrinkage; T40—final softening temperature; (T40?T10)—softening temperature range; TS—start melting temperature; TD—dropping temperature; (TD?TS) —melting temperature range; ?Pmax—maximum pressure difference in molten state. www.77susu.com -
參考文獻
[1] Jiang H B, Meng W, Chen C B, et al. Practice of limonite addition for 360 m2 sinter machine of Beisteel Iron-Making Plant. Sinter Pelletiz, 2010, 35(4): 50蔣海冰, 孟巍, 陳朝斌, 等. 北鋼煉鐵廠360 m2燒結機配加褐鐵礦的實踐. 燒結球團, 2010, 35(4):50 [2] Shen T, Chen W. Experimental study and application about large proportion brown iron ore sintering. Min Metall, 2010, 19(4): 75 doi: 10.3969/j.issn.1005-7854.2010.04.020沈鐵, 陳偉. 大比例褐鐵礦燒結的試驗研究及應用. 礦冶, 2010, 19(4):75 doi: 10.3969/j.issn.1005-7854.2010.04.020 [3] Zhang Y J, Bai H. Experimental research on typical limonite sintering. Res Iron Steel, 2016, 44(2): 10張元娟, 白皓. 典型褐鐵礦燒結試驗研究. 鋼鐵研究, 2016, 44(2):10 [4] Pei Y D, Zhao Z X, Ma Z J, et al. Mechanism analysis and experimental research on high ratio limonite sintering. Sinter Pelletiz, 2011, 36(5): 1裴元東, 趙志星, 馬澤軍, 等. 高比例褐鐵礦燒結機理分析及試驗研究. 燒結球團, 2011, 36(5):1 [5] Loo C E. A perspective of goethitic ore sintering fundamentals. ISIJ Int, 2005, 45(4): 436 doi: 10.2355/isijinternational.45.436 [6] Wu H Y, Xia Z J, Chen X G. Experimental study and production practice of high proportion limonite sintering. Sinter Pelletiz, 2018, 43(4): 17吳洪義, 夏志堅, 陳曉光. 高褐鐵礦的燒結試驗研究及生產實踐. 燒結球團, 2018, 43(4):17 [7] Huang W Q, Zhang X X, Liu Y X, et al. High effective utilization technology of limonite in sintering. J Iron Steel Res, 2016, 28(7): 13黃偉青, 張旭孝, 劉燕霞, 等. 褐鐵礦在燒結中的高效使用技術. 鋼鐵研究學報, 2016, 28(7):13 [8] Jin J, Wu Y, Jiang J H. Study on sintering technique for high ratio of limonite. Iron Steel, 2009, 44(8): 16金俊, 武軼, 江吉惠. 高比例褐鐵礦燒結技術研究. 鋼鐵, 2009, 44(8):16 [9] Wang Y F, Wu S L, Han H L. Improvement in quality and quantity indices of sinter with high proportion of limonite. J Univ Sci Technol Beijing, 2010, 32(3): 292王躍飛, 吳勝利, 韓宏亮. 高褐鐵礦配比下提高燒結礦產質量指標. 北京科技大學學報, 2010, 32(3):292 [10] Huang Z C, Yi L Y, Hu B, et al. Experimental investigation on sintering with high ratio of limonite. Iron Steel, 2012, 47(5): 9黃柱成, 易凌云, 胡兵, 等. 高配比褐鐵礦的燒結配礦試驗研究. 鋼鐵, 2012, 47(5):9 [11] Liu Z L, Yang J F, Feng G S, et al. Study on sintering test with high ratio of limonite. Iron Steel, 2004, 39(12): 9 doi: 10.3321/j.issn:0449-749X.2004.12.003劉振林, 楊金福, 馮根生, 等. 高配比褐鐵礦的燒結試驗研究. 鋼鐵, 2004, 39(12):9 doi: 10.3321/j.issn:0449-749X.2004.12.003 [12] Lin E Y. Experimental study on sintering process optimization of high ratio limonites. Sinter Pelletiz, 2020, 45(2): 15林恩玉. 高配比褐鐵礦燒結工藝優化試驗研究. 燒結球團, 2020, 45(2):15 [13] He H S, Lv X F, Wang J F, et al. Characteristics evaluation and high effective utilization of limonite ores in sintering process. Min Metall Explor, 2021, 38(5): 2271 [14] Liu D H, Liu H, Zhang J L, er al. Basic characteristics of Australian iron ore concentrate and its effects on sinter properties during the high-limonite sintering process. Int J Miner Metall Mater, 2017, 24(9): 991 doi: 10.1007/s12613-017-1487-1 [15] Pan W, Wu K, Wang W Z, et al. Thermal decomposition characteristics of limonite and their influences on the sintering process. J Northeast Univ Nat Sci, 2013, 34(9): 1277 doi: 10.3969/j.issn.1005-3026.2013.09.015潘文, 吳鏗, 王文澤, 等. 褐鐵礦的熱分解特性及其對燒結過程的影響. 東北大學學報(自然科學版), 2013, 34(9):1277 doi: 10.3969/j.issn.1005-3026.2013.09.015 [16] Hong Y C. Study on fundamental properties of limonite in sinter process. J Iron Steel Res, 2010, 22(9): 9洪益成. 褐鐵礦燒結基礎性能的研究. 鋼鐵研究學報, 2010, 22(9):9 [17] Liu Z P, Ma J M, Gao R F, et al. Study and production of limonite sinter. Iron Steel, 2005, 40(2): 19 doi: 10.3321/j.issn:0449-749X.2005.02.005劉正平, 馬金明, 高瑞芳, 等. 褐鐵礦燒結研究與生產. 鋼鐵, 2005, 40(2):19 doi: 10.3321/j.issn:0449-749X.2005.02.005 [18] Fan X H. The Principle and Technology of Optimizing Iron Ore Powder in the Sintering Process. Beijing: Metallurgical Industry Press, 2013范曉慧. 鐵礦燒結優化配礦原理與技術. 北京: 冶金工業出版社, 2013 [19] Zhou H, Xing Y J, Zhou M X, et al. Migration behavior of alkali metals in an iron ore sintering process with the substitution of biomass for coke breeze. Chin J Eng, 2021, 43(5): 377周昊, 刑裕健, 周明熙, 等. 生物質替代焦粉鐵礦石燒結過程中堿金屬遷移行為. 工程科學學報, 2021, 43(5):377 [20] Li Y R, Zhou M S, Zhai L W, et al. Experimental study on limonitic sintering. Sinter Pelletiz, 2005, 30(1): 4 doi: 10.3969/j.issn.1000-8764.2005.01.002李艷茹, 周明順, 翟立委, 等. 褐鐵礦用于燒結的試驗研究. 燒結球團, 2005, 30(1):4 doi: 10.3969/j.issn.1000-8764.2005.01.002 [21] Debrincat D, Loo C E, Hutchens M F. Effect of iron ore particle assimilation on sinter structure. ISIJ Int, 2004, 44(8): 1308 doi: 10.2355/isijinternational.44.1308 [22] Zhang F, Zhu D Q, Pan J. Sintering performance of blends containing high proportion of limonite // 8th International Symposium on High-Temperature Metallurgical Processing. Springer, 2017: 615 [23] Xie L B. Analysis of influence of crystal water content on limonite sintering properties. Min Metall Eng, 2012, 32(6): 93謝路奔. 結晶水含量對褐鐵礦燒結性能的影響及分析. 礦冶工程, 2012, 32(6):93 [24] Zhou G F, Bi X G, Weng D M. Laboratory research of sinter with full limonite. Res Iron Steel, 2006, 34(1): 4 doi: 10.3969/j.issn.1001-1447.2006.01.002周國凡, 畢學工, 翁德明. 全褐鐵礦燒結的實驗研究. 鋼鐵研究, 2006, 34(1):4 doi: 10.3969/j.issn.1001-1447.2006.01.002 [25] Qiu J Y, Li X B, Xu Y B, et al. Production test of high ratio limonite sintering in Yongtong Company. Sinter Pelletiz, 2010, 35(2): 1邱家用, 李新兵, 徐楊斌, 等. 永通公司高比例褐鐵礦燒結的生產試驗. 燒結球團, 2010, 35(2):1 [26] Xiao Z X. Research on the Mineralization Mechanism and Sinter Proportioning with Inferior Iron Ores [Dissertation]. Wuhan: Wuhan University of Science and Technology, 2018肖志新. 低質鐵礦燒結成礦機理及配料結構研究 [學位論文]. 武漢: 武漢科技大學, 2018 [27] Shang X Y. Theory and Practice of Limonite Replacing Traditional Concentrate Powder [Dissertation]. Tangshan: North China University of Science and Technology, 2019尚曉宇. 褐鐵礦代替傳統精礦粉的理論與實踐 [學位論文]. 唐山: 華北理工大學, 2019 [28] Fan X H, Yin L, Ji Z Y, et al. Effect of biomass fuel on sintering of high mass fraction limonite. J Cent South Univ Sci Technol, 2015, 46(10): 3560范曉慧, 尹亮, 季志云, 等. 生物質炭強化高質量分數褐鐵礦燒結研究. 中南大學學報(自然科學版), 2015, 46(10):3560 [29] Rao J T. Effect of different particle size of limonite on high Titanium sinter indexes. Sinter Pelletiz, 2011, 36(5): 15饒家庭. 不同粒度褐鐵礦對高鈦型燒結礦指標的影響. 燒結球團, 2011, 36(5):15 [30] Yang J K, Wang F C. Experimental study on sintering with high proportion of difference size of Guisha Limonite. Sinter Pelletiz, 2016, 41(1): 12楊杰康, 王福才. 高配比不同粒級貴沙褐鐵礦燒結試驗研究. 燒結球團, 2016, 41(1):12 -