Influence and mechanism of alkali-metal modification on ZSM-5 structure and toluene adsorption
-
摘要: ZSM-5是一種常用來吸附甲苯的微孔吸附劑,選擇三種堿金屬Li、Na和K對ZSM-5進行改性,結合表征手段和數學模型的方式研究引入ZSM-5中的堿金屬對微孔結構和吸附甲苯的影響。在此實驗中,分別從吸附容量、放熱能量、擴散阻力和脫附活化能四方面深入探討堿金屬對吸附甲苯的影響規律。基于實驗結果得知:堿金屬的引入改變了ZSM-5分子篩的微孔結構并呈現出一定的規律。隨著離子半徑(Li+<Na+<K+)的升高,ZSM-5的孔徑、比表面積和孔體積隨之降低,影響規律為Li?ZSM-5 > Na?ZSM-5 > K?ZSM-5。靜態飽和吸附量呈Li?ZSM-5(0.363 mmol·g?1)>Na?ZSM-5(0.360 mmol·g?1)>K?ZSM-5(0.325 mmol·g?1)排序。恒定濃度波模型很好的描述甲苯在ZSM-5上的吸附擴散行為,空間位阻和靜電束縛力分別在高低進氣濃度條件下對甲苯在ZSM-5孔道中的擴散占據主導作用,較高進氣質量濃度(155 mg·m?3)條件下,堿金屬改性對擴散阻力影響規律為Li?ZSM-5<Na?ZSM-5<K?ZSM-5;較低進氣質量濃度(25 mg·m?3)條件下,影響規律為Li?ZSM-5>Na?ZSM-5>K?ZSM-5。結合脫附動力學分析,Na?ZSM-5因具有較大的孔徑和適中的吸附強度,表現出更好的再生潛能。本研究從空間位阻和吸附強度兩方面系統闡述了堿金屬改性對甲苯吸附行為的影響機理,為在復雜的實際環境應用中選擇合適的吸附劑提供了一定的參考意義。Abstract: The microporous adsorbent ZSM-5 has been extensively applied for toluene adsorption. In this work, ZSM-5 was modified with alkali metals Li, Na, and K for toluene adsorption. The effects of the alkali metals introduced into ZSM-5 on the ZSM-5 microporous structure and toluene adsorption were studied via characterization techniques and mathematical modeling. Moreover, the influence of alkali metals on toluene adsorption was investigated from four aspects: adsorption capacity, exothermic energy, diffusion resistance, and desorption activation energy. The experimental results show that the introduction of alkali metal affect the ZSM-5 microporous structure in different aspects. The pore size, specific surface area, and pore volume of the modified ZSM-5 were of the following order: Li?ZSM-5 > Na?ZSM-5 > K?ZSM-5, corresponding to increasing ionic radius of the metals (Li+ < Na+ < K+). Likewise, the static saturated adsorption capacity was of the order: Li?ZSM-5 (0.363 mmol·g?1) > Na?ZSM-5 (0.360 mmol·g?1)> K?ZSM-5 (0.325 mmol·g?1). The constant concentration wave model could well fit the adsorption and diffusion behaviors of toluene onto ZSM-5. The steric hindrance and electrostatic binding force played a dominant role in toluene diffusion in the ZSM-5 channel at high and low inlet gas concentrations, respectively. At a higher inlet concentration (155 mg·m?3), the influence of alkali metal modification on the internal diffusion resistance for the three adsorbents was of the order: Li?ZSM-5< Na?ZSM-5 < K?ZSM-5, whereas at a lower inlet concentration (25 mg·m?3), the trend was Li?ZSM-5 > Na?ZSM-5 > K?ZSM-5. The desorption kinetics analysis show that Na?ZSM-5 exhibite a better regeneration potential, due to its large pore size and moderate adsorption strength. In this study, the mechanism of alkali-metal modification of the adsorption behavior toward toluene was systematically investigated from two aspects: steric hindrance and adsorption strength to provide a certain reference for selecting a suitable adsorbent in complex practical environments.
-
Key words:
- zeolite /
- toluene /
- steric hindrance /
- adsorption strength /
- alkali-metal modification
-
表 1 改性ZSM-5的離子交換程度和孔結構
Table 1. Ion-exchange rate and texture properties for modified ZSM-5
Materials Ion-exchange
rate /%Pore-size
distribution/
nmPore volume /
(cm3·g?1)Specific
surface area /
(m2·g?1)Li-ZSM-5 91.43 0.58?0.75 0.216 335 Na-ZSM-5 87.67 0.58?0.75 0.198 302 K-ZSM-5 92.73 0.43?0.55 0.177 281 表 2 吸附等溫線擬合結果
Table 2. Fitting results of adsorption isotherm models
Models Parameters Li?ZSM-5 Na?ZSM-5 K?ZSM-5 L?F qm 3.805 8.033 8.602 KL?F 0.003 0.002 0.001 γ 0.388 0.471 0.501 R2 0.981 0.993 0.994 Freundlich KF 0.363 0.360 0.325 n 2.698 2.166 1.962 R2 0.9919 0.9987 0.9968 表 3 甲苯吸附在改性ZSM-5中的熱力學變化
Table 3. Changes in thermodynamics for toluene adsorption on modified ZSM-5
Materials ΔH/
(kJ·mol?1)ΔS/
(J·mol?1·K?1)ΔG/(kJ·mol?1) 288 K 298 K 308 K Li?ZSM-5 ?18.92 ?46.31 ?5.58 ?5.12 ?4.66 Na?ZSM-5 ?17.81 ?41.49 ?5.86 ?5.45 ?5.03 K?ZSM-5 ?15.46 ?33.67 ?5.76 ?5.42 ?5.09 表 4 甲苯在改性ZSM-5上的吸附動力學參數
Table 4. Mass transfer parameters for toluene adsorption on modified ZSM-5
Adsorbents C0/
(mg·m?3)q0/
(mmol·g?1)KP/
(10?2 s?1)Kfα/
(104 s?1)KGα/
(103 s?1)R2 Li?ZSM-5 25 0.233 8.97 2.16 4.08 0.993 155 0.106 3.98 2.16 4.91 0.993 Na?ZSM-5 25 0.225 8.90 2.16 3.95 0.983 155 0.095 4.69 2.16 5.15 0.981 K?ZSM-5 25 0.213 8.20 2.16 3.53 0.973 155 0.081 5.60 2.16 5.20 0.913 表 5 Kissinger方程估算脫附動力學參數
Table 5. kinetic parameters obtained by the Kissinger method
Sample θ/% β/(K·min?1) TP/K Ea/(kJ·mol?1) lnA R2 Li?ZSM-5 7.8 10 325.56 44.56 15.78 0.9997 7.6 20 338.48 7.2 30 346.03 Na?ZSM-5 8.0 10 303.28 35.21 4.42 0.9932 6.7 20 331.87 7.0 30 350.23 K?ZSM-5 6.7 10 321.94 47.70 17.29 0.9110 6.3 20 330.81 6.8 30 340.72 www.77susu.com -
參考文獻
[1] Zhang X Y, Gao B, Creamer A E, et al. Adsorption of VOCs onto engineered carbon materials: A review. J Hazard Mater, 2017, 338: 102 doi: 10.1016/j.jhazmat.2017.05.013 [2] Dhital N B, Yang H H, Wang L C, et al. VOCs emission characteristics in motorcycle exhaust with different emission control devices. Atmos Pollut Res, 2019, 10(5): 1498 doi: 10.1016/j.apr.2019.04.007 [3] Liu Y, Gao Y, Yu N, et al. Particulate matter, gaseous and particulate polycyclic aromatic hydrocarbons (PAHs) in an urban traffic tunnel of China: Emission from on-road vehicles and gas-particle partitioning. Chemosphere, 2015, 134: 52 doi: 10.1016/j.chemosphere.2015.03.065 [4] Li Z Y, Liu Y S, Jiang L J, et al. Research progress on adsorption purification technology of gaseous polycyclic aromatic hydrocarbons. Chin J Eng, 2018, 40(2): 127李子宜, 劉應書, 姜理俊, 等. 氣相多環芳烴的吸附凈化技術研究進展. 工程科學學報, 2018, 40(2):127 [5] Liu Y S, Li Z Y, Yang X, et al. Performance of mesoporous silicas (MCM-41 and SBA-15) and carbon (CMK-3) in the removal of gas-phase naphthalene: adsorption capacity, rate and regenerability. RSC Adv, 2016, 6(25): 21193 doi: 10.1039/C5RA27289K [6] Li Z Y, Liu Y S, Yang X, et al. Performance of mesoporous silicas and carbon in adsorptive removal of phenanthrene as a typical gaseous polycyclic aromatic hydrocarbon. Microporous Mesoporous Mater, 2017, 239: 9 doi: 10.1016/j.micromeso.2016.09.027 [7] Yang X, Yi H H, Tang X L, et al. Behaviors and kinetics of toluene adsorption-desorption on activated carbons with varying pore structure. J Environ Sci, 2018, 67: 104 doi: 10.1016/j.jes.2017.06.032 [8] Kustov L, Golubeva V, Korableva A, et al. Alkaline-modified ZSM-5 zeolite to control hydrocarbon cold-start emission. Microporous Mesoporous Mater, 2018, 260: 54 doi: 10.1016/j.micromeso.2017.06.050 [9] Lillo-Ródenas M A, Cazorla-Amorós D, Linares-Solano A. Behaviour of activated carbons with different pore size distributions and surface oxygen groups for benzene and toluene adsorption at low concentrations. Carbon, 2005, 43(8): 1758 doi: 10.1016/j.carbon.2005.02.023 [10] Koriabkina A O, de Jong A M, Schuring D, et al. Influence of the acid sites on the intracrystalline diffusion of hexanes and their mixtures within MFI-zeolites. J Phys Chem B, 2002, 106(37): 9559 doi: 10.1021/jp014464a [11] Jeppu G P, Clement T P. A modified Langmuir-Freundlich isotherm model for simulating pH-dependent adsorption effects. J Contam Hydrol, 2012, 129-130: 46 doi: 10.1016/j.jconhyd.2011.12.001 [12] Bülow M, Shen D M, Jale S. Measurement of sorption equilibria under isosteric conditions: the principles, advantages and limitations. Appl Surf Sci, 2002, 196(1-4): 157 doi: 10.1016/S0169-4332(02)00052-1 [13] Fu Y G, Liu Y S, Yang X, et al. Thermodynamic analysis of molecular simulations of N2 and O2 adsorption on zeolites under plateau special conditions. Appl Surf Sci, 2019, 480: 868 doi: 10.1016/j.apsusc.2019.03.011 [14] Meng M M, Liu Y S, Li Z Y, et al. Adsorption characteristics of low concentration gaseous naphthalene on ordered mesoporous carbons. CIESC J, 2017, 68(8): 3109孟苗苗, 劉應書, 李子宜, 等. 有序介孔碳對低濃度氣相萘的吸附特性分析. 化工學報, 2017, 68(8):3109 [15] Yang Q, Liu Y S, Li Z Y, et al. Study on the adsorption behaviours of naphthalene on MCM-41 and SBA-15 mesoporous molecular sieves. J Fuel Chem Technol, 2015, 43(12): 1482 doi: 10.3969/j.issn.0253-2409.2015.12.012楊權, 劉應書, 李子宜, 等. 萘在介孔分子篩 MCM-41 與 SBA-15 上的吸附特性研究. 燃料化學學報, 2015, 43(12):1482 doi: 10.3969/j.issn.0253-2409.2015.12.012 [16] Wang Z Y, Liu Y S, Li Z Y, et al. Desorption behavior of ethanedioic acid and benzoic acid on activated carbon. CIESC J, 2015, 66(10): 4016王占營, 劉應書, 李子宜, 等. 乙二酸和苯甲酸在活性炭上的脫附行為. 化工學報, 2015, 66(10):4016 [17] Otomo R, Kosugi R, Kamiya Y, et al. Modification of Sn-Beta zeolite: characterization of acidic/basic properties and catalytic performance in Baeyer–Villiger oxidation. Catal Sci Technol, 2016, 6(8): 2787 doi: 10.1039/C6CY00532B [18] Yang L H, Gao C H, Wang D, et al. Synthesis and adsorption of ZSM-5 zeolite. J Hebei Univ Technol, 2010, 39(5): 33 doi: 10.3969/j.issn.1007-2373.2010.05.008楊麗輝, 高長虹, 王東, 等. ZSM-5型分子篩的合成及其吸附性能. 河北工業大學學報, 2010, 39(5):33 doi: 10.3969/j.issn.1007-2373.2010.05.008 [19] Zhang L, Feng Z Y, Wei J Y, et al. Zeolite adsorbents used for dutrex removal in cold start exhaust. Mater Rev, 2012, 26(13): 139 doi: 10.3969/j.issn.1005-023X.2012.13.028張蘭, 馮朝陽, 尉繼英, 等. 分子篩對汽車冷啟動尾氣中芳香烴吸附性能的研究進展. 材料導報, 2012, 26(13):139 doi: 10.3969/j.issn.1005-023X.2012.13.028 [20] Tansel B, Sager J, Rector T, et al. Significance of hydrated radius and hydration shells on ionic permeability during nanofiltration in dead end and cross flow modes. Sep Purif Technol, 2006, 51(1): 40 doi: 10.1016/j.seppur.2005.12.020 [21] Shiue A, Kang Y H, Hu S C, et al. Vapor adsorption characteristics of toluene in an activated carbon adsorbent-loaded nonwoven fabric media for chemical filters applied to cleanrooms. Build Environ, 2010, 45(10): 2123 doi: 10.1016/j.buildenv.2010.03.008 [22] Shen W L, Li J X, Yang Y, et al. Binary adsorption equilibrium of CH4, N2 and CO2 on zeolite ZSM-5. CIESC J, 2014, 65(9): 3490 doi: 10.3969/j.issn.0438-1157.2014.09.025沈文龍, 李嘉旭, 楊穎, 等. 基于沸石ZSM-5的CH4/N2/CO2二元體系吸附平衡. 化工學報, 2014, 65(9):3490 doi: 10.3969/j.issn.0438-1157.2014.09.025 [23] Frantz T S, Ruiz W A, da Rosa C A, et al. Synthesis of ZSM-5 with high sodium content for CO2 adsorption. Microporous Mesoporous Mater, 2016, 222: 209 doi: 10.1016/j.micromeso.2015.10.022 [24] Li X, Li Z, Luo L A. New TPD model for activation energy estimation. CIESC J, 2006, 57(2): 258 doi: 10.3321/j.issn:0438-1157.2006.02.005李湘, 李忠, 羅靈愛. 程序升溫脫附活化能估算新模型. 化工學報, 2006, 57(2):258 doi: 10.3321/j.issn:0438-1157.2006.02.005 [25] Kondo S, Ishikawa T, Abe I, et al. Adsorption Science. 2nd Ed. Translated by Li G X. Beijing: Chemical Industry Press, 2006近藤精一, 石川達雄, 安部郁夫. 吸附科學. 2版. 李國希, 譯. 北京: 化學工業出版社, 2006 [26] Yamashita R, Saito Y, Sakuragawa S. Molecular sieving behavior of carbonized wood: selective adsorption of toluene from a gas mixture containing α-pinene. J Wood Sci, 2009, 55(6): 446 doi: 10.1007/s10086-009-1062-0 -