<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

堿金屬改性對ZSM-5結構和吸附甲苯特性的影響及機理

崔永康 邢奕 蘇偉 王嘉慶

崔永康, 邢奕, 蘇偉, 王嘉慶. 堿金屬改性對ZSM-5結構和吸附甲苯特性的影響及機理[J]. 工程科學學報, 2021, 43(11): 1534-1542. doi: 10.13374/j.issn2095-9389.2020.07.25.001
引用本文: 崔永康, 邢奕, 蘇偉, 王嘉慶. 堿金屬改性對ZSM-5結構和吸附甲苯特性的影響及機理[J]. 工程科學學報, 2021, 43(11): 1534-1542. doi: 10.13374/j.issn2095-9389.2020.07.25.001
CUI Yong-kang, XING Yi, SU Wei, WANG Jia-qing. Influence and mechanism of alkali-metal modification on ZSM-5 structure and toluene adsorption[J]. Chinese Journal of Engineering, 2021, 43(11): 1534-1542. doi: 10.13374/j.issn2095-9389.2020.07.25.001
Citation: CUI Yong-kang, XING Yi, SU Wei, WANG Jia-qing. Influence and mechanism of alkali-metal modification on ZSM-5 structure and toluene adsorption[J]. Chinese Journal of Engineering, 2021, 43(11): 1534-1542. doi: 10.13374/j.issn2095-9389.2020.07.25.001

堿金屬改性對ZSM-5結構和吸附甲苯特性的影響及機理

doi: 10.13374/j.issn2095-9389.2020.07.25.001
基金項目: 國家自然科學基金資助項目(51770438)
詳細信息
    通訊作者:

    Email:suwei3007@163.com

  • 中圖分類號: X513

Influence and mechanism of alkali-metal modification on ZSM-5 structure and toluene adsorption

More Information
  • 摘要: ZSM-5是一種常用來吸附甲苯的微孔吸附劑,選擇三種堿金屬Li、Na和K對ZSM-5進行改性,結合表征手段和數學模型的方式研究引入ZSM-5中的堿金屬對微孔結構和吸附甲苯的影響。在此實驗中,分別從吸附容量、放熱能量、擴散阻力和脫附活化能四方面深入探討堿金屬對吸附甲苯的影響規律。基于實驗結果得知:堿金屬的引入改變了ZSM-5分子篩的微孔結構并呈現出一定的規律。隨著離子半徑(Li+<Na+<K+)的升高,ZSM-5的孔徑、比表面積和孔體積隨之降低,影響規律為Li?ZSM-5 > Na?ZSM-5 > K?ZSM-5。靜態飽和吸附量呈Li?ZSM-5(0.363 mmol·g?1)>Na?ZSM-5(0.360 mmol·g?1)>K?ZSM-5(0.325 mmol·g?1)排序。恒定濃度波模型很好的描述甲苯在ZSM-5上的吸附擴散行為,空間位阻和靜電束縛力分別在高低進氣濃度條件下對甲苯在ZSM-5孔道中的擴散占據主導作用,較高進氣質量濃度(155 mg·m?3)條件下,堿金屬改性對擴散阻力影響規律為Li?ZSM-5<Na?ZSM-5<K?ZSM-5;較低進氣質量濃度(25 mg·m?3)條件下,影響規律為Li?ZSM-5>Na?ZSM-5>K?ZSM-5。結合脫附動力學分析,Na?ZSM-5因具有較大的孔徑和適中的吸附強度,表現出更好的再生潛能。本研究從空間位阻和吸附強度兩方面系統闡述了堿金屬改性對甲苯吸附行為的影響機理,為在復雜的實際環境應用中選擇合適的吸附劑提供了一定的參考意義。

     

  • 圖  1  吸附甲苯實驗流程圖

    Figure  1.  Schematic of toluene adsorption system

    圖  2  改性ZSM-5的XRD圖

    Figure  2.  XRD patterns of modified ZSM-5

    圖  3  改性ZSM-5的孔徑分布(a)和吸/脫附等溫線圖(b)

    Figure  3.  Pore size distribution (a) and adsorption/desorption isotherm (b) of modified ZSM-5

    圖  4  298 K溫度下甲苯在改性ZSM-5的吸附等溫線

    Figure  4.  Adsorption isotherms of toluene on modified ZSM-5 at 298 K

    圖  5  298 K溫度下甲苯在改性ZSM-5的吸附等溫線

    Figure  5.  Model-fitting and experimental breakthrough curves for toluene on modified ZSM-5 at 295 K

    圖  6  甲苯在改性ZSM-5的TG和DTG曲線

    Figure  6.  TG and DTG curves of toluene on modified ZSM-5

    表  1  改性ZSM-5的離子交換程度和孔結構

    Table  1.   Ion-exchange rate and texture properties for modified ZSM-5

    MaterialsIon-exchange
    rate /%
    Pore-size
    distribution/
    nm
    Pore volume /
    (cm3·g?1)
    Specific
    surface area /
    (m2·g?1)
    Li-ZSM-591.430.58?0.750.216335
    Na-ZSM-587.670.58?0.750.198302
    K-ZSM-592.730.43?0.550.177281
    下載: 導出CSV

    表  2  吸附等溫線擬合結果

    Table  2.   Fitting results of adsorption isotherm models

    ModelsParametersLi?ZSM-5Na?ZSM-5K?ZSM-5
    L?Fqm3.8058.0338.602
    KL?F0.0030.0020.001
    γ0.3880.4710.501
    R20.9810.9930.994
    FreundlichKF0.3630.3600.325
    n2.6982.1661.962
    R20.99190.99870.9968
    下載: 導出CSV

    表  3  甲苯吸附在改性ZSM-5中的熱力學變化

    Table  3.   Changes in thermodynamics for toluene adsorption on modified ZSM-5

    MaterialsΔH/
    (kJ·mol?1)
    ΔS/
    (J·mol?1·K?1)
    ΔG/(kJ·mol?1)
    288 K298 K308 K
    Li?ZSM-5?18.92?46.31?5.58?5.12?4.66
    Na?ZSM-5?17.81?41.49?5.86?5.45?5.03
    K?ZSM-5?15.46?33.67?5.76?5.42?5.09
    下載: 導出CSV

    表  4  甲苯在改性ZSM-5上的吸附動力學參數

    Table  4.   Mass transfer parameters for toluene adsorption on modified ZSM-5

    AdsorbentsC0/
    (mg·m?3)
    q0/
    (mmol·g?1)
    KP/
    (10?2 s?1)
    Kfα/
    (104 s?1)
    KGα/
    (103 s?1)
    R2
    Li?ZSM-5250.2338.972.164.080.993
    1550.1063.982.164.910.993
    Na?ZSM-5250.2258.902.163.950.983
    1550.0954.692.165.150.981
    K?ZSM-5250.2138.202.163.530.973
    1550.0815.602.165.200.913
    下載: 導出CSV

    表  5  Kissinger方程估算脫附動力學參數

    Table  5.   kinetic parameters obtained by the Kissinger method

    Sampleθ/%β/(K·min?1)TP/KEa/(kJ·mol?1)lnAR2
    Li?ZSM-57.810325.5644.5615.780.9997
    7.620338.48
    7.230346.03
    Na?ZSM-58.010303.2835.214.420.9932
    6.720331.87
    7.030350.23
    K?ZSM-56.710321.9447.7017.290.9110
    6.320330.81
    6.830340.72
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Zhang X Y, Gao B, Creamer A E, et al. Adsorption of VOCs onto engineered carbon materials: A review. J Hazard Mater, 2017, 338: 102 doi: 10.1016/j.jhazmat.2017.05.013
    [2] Dhital N B, Yang H H, Wang L C, et al. VOCs emission characteristics in motorcycle exhaust with different emission control devices. Atmos Pollut Res, 2019, 10(5): 1498 doi: 10.1016/j.apr.2019.04.007
    [3] Liu Y, Gao Y, Yu N, et al. Particulate matter, gaseous and particulate polycyclic aromatic hydrocarbons (PAHs) in an urban traffic tunnel of China: Emission from on-road vehicles and gas-particle partitioning. Chemosphere, 2015, 134: 52 doi: 10.1016/j.chemosphere.2015.03.065
    [4] Li Z Y, Liu Y S, Jiang L J, et al. Research progress on adsorption purification technology of gaseous polycyclic aromatic hydrocarbons. Chin J Eng, 2018, 40(2): 127

    李子宜, 劉應書, 姜理俊, 等. 氣相多環芳烴的吸附凈化技術研究進展. 工程科學學報, 2018, 40(2):127
    [5] Liu Y S, Li Z Y, Yang X, et al. Performance of mesoporous silicas (MCM-41 and SBA-15) and carbon (CMK-3) in the removal of gas-phase naphthalene: adsorption capacity, rate and regenerability. RSC Adv, 2016, 6(25): 21193 doi: 10.1039/C5RA27289K
    [6] Li Z Y, Liu Y S, Yang X, et al. Performance of mesoporous silicas and carbon in adsorptive removal of phenanthrene as a typical gaseous polycyclic aromatic hydrocarbon. Microporous Mesoporous Mater, 2017, 239: 9 doi: 10.1016/j.micromeso.2016.09.027
    [7] Yang X, Yi H H, Tang X L, et al. Behaviors and kinetics of toluene adsorption-desorption on activated carbons with varying pore structure. J Environ Sci, 2018, 67: 104 doi: 10.1016/j.jes.2017.06.032
    [8] Kustov L, Golubeva V, Korableva A, et al. Alkaline-modified ZSM-5 zeolite to control hydrocarbon cold-start emission. Microporous Mesoporous Mater, 2018, 260: 54 doi: 10.1016/j.micromeso.2017.06.050
    [9] Lillo-Ródenas M A, Cazorla-Amorós D, Linares-Solano A. Behaviour of activated carbons with different pore size distributions and surface oxygen groups for benzene and toluene adsorption at low concentrations. Carbon, 2005, 43(8): 1758 doi: 10.1016/j.carbon.2005.02.023
    [10] Koriabkina A O, de Jong A M, Schuring D, et al. Influence of the acid sites on the intracrystalline diffusion of hexanes and their mixtures within MFI-zeolites. J Phys Chem B, 2002, 106(37): 9559 doi: 10.1021/jp014464a
    [11] Jeppu G P, Clement T P. A modified Langmuir-Freundlich isotherm model for simulating pH-dependent adsorption effects. J Contam Hydrol, 2012, 129-130: 46 doi: 10.1016/j.jconhyd.2011.12.001
    [12] Bülow M, Shen D M, Jale S. Measurement of sorption equilibria under isosteric conditions: the principles, advantages and limitations. Appl Surf Sci, 2002, 196(1-4): 157 doi: 10.1016/S0169-4332(02)00052-1
    [13] Fu Y G, Liu Y S, Yang X, et al. Thermodynamic analysis of molecular simulations of N2 and O2 adsorption on zeolites under plateau special conditions. Appl Surf Sci, 2019, 480: 868 doi: 10.1016/j.apsusc.2019.03.011
    [14] Meng M M, Liu Y S, Li Z Y, et al. Adsorption characteristics of low concentration gaseous naphthalene on ordered mesoporous carbons. CIESC J, 2017, 68(8): 3109

    孟苗苗, 劉應書, 李子宜, 等. 有序介孔碳對低濃度氣相萘的吸附特性分析. 化工學報, 2017, 68(8):3109
    [15] Yang Q, Liu Y S, Li Z Y, et al. Study on the adsorption behaviours of naphthalene on MCM-41 and SBA-15 mesoporous molecular sieves. J Fuel Chem Technol, 2015, 43(12): 1482 doi: 10.3969/j.issn.0253-2409.2015.12.012

    楊權, 劉應書, 李子宜, 等. 萘在介孔分子篩 MCM-41 與 SBA-15 上的吸附特性研究. 燃料化學學報, 2015, 43(12):1482 doi: 10.3969/j.issn.0253-2409.2015.12.012
    [16] Wang Z Y, Liu Y S, Li Z Y, et al. Desorption behavior of ethanedioic acid and benzoic acid on activated carbon. CIESC J, 2015, 66(10): 4016

    王占營, 劉應書, 李子宜, 等. 乙二酸和苯甲酸在活性炭上的脫附行為. 化工學報, 2015, 66(10):4016
    [17] Otomo R, Kosugi R, Kamiya Y, et al. Modification of Sn-Beta zeolite: characterization of acidic/basic properties and catalytic performance in Baeyer–Villiger oxidation. Catal Sci Technol, 2016, 6(8): 2787 doi: 10.1039/C6CY00532B
    [18] Yang L H, Gao C H, Wang D, et al. Synthesis and adsorption of ZSM-5 zeolite. J Hebei Univ Technol, 2010, 39(5): 33 doi: 10.3969/j.issn.1007-2373.2010.05.008

    楊麗輝, 高長虹, 王東, 等. ZSM-5型分子篩的合成及其吸附性能. 河北工業大學學報, 2010, 39(5):33 doi: 10.3969/j.issn.1007-2373.2010.05.008
    [19] Zhang L, Feng Z Y, Wei J Y, et al. Zeolite adsorbents used for dutrex removal in cold start exhaust. Mater Rev, 2012, 26(13): 139 doi: 10.3969/j.issn.1005-023X.2012.13.028

    張蘭, 馮朝陽, 尉繼英, 等. 分子篩對汽車冷啟動尾氣中芳香烴吸附性能的研究進展. 材料導報, 2012, 26(13):139 doi: 10.3969/j.issn.1005-023X.2012.13.028
    [20] Tansel B, Sager J, Rector T, et al. Significance of hydrated radius and hydration shells on ionic permeability during nanofiltration in dead end and cross flow modes. Sep Purif Technol, 2006, 51(1): 40 doi: 10.1016/j.seppur.2005.12.020
    [21] Shiue A, Kang Y H, Hu S C, et al. Vapor adsorption characteristics of toluene in an activated carbon adsorbent-loaded nonwoven fabric media for chemical filters applied to cleanrooms. Build Environ, 2010, 45(10): 2123 doi: 10.1016/j.buildenv.2010.03.008
    [22] Shen W L, Li J X, Yang Y, et al. Binary adsorption equilibrium of CH4, N2 and CO2 on zeolite ZSM-5. CIESC J, 2014, 65(9): 3490 doi: 10.3969/j.issn.0438-1157.2014.09.025

    沈文龍, 李嘉旭, 楊穎, 等. 基于沸石ZSM-5的CH4/N2/CO2二元體系吸附平衡. 化工學報, 2014, 65(9):3490 doi: 10.3969/j.issn.0438-1157.2014.09.025
    [23] Frantz T S, Ruiz W A, da Rosa C A, et al. Synthesis of ZSM-5 with high sodium content for CO2 adsorption. Microporous Mesoporous Mater, 2016, 222: 209 doi: 10.1016/j.micromeso.2015.10.022
    [24] Li X, Li Z, Luo L A. New TPD model for activation energy estimation. CIESC J, 2006, 57(2): 258 doi: 10.3321/j.issn:0438-1157.2006.02.005

    李湘, 李忠, 羅靈愛. 程序升溫脫附活化能估算新模型. 化工學報, 2006, 57(2):258 doi: 10.3321/j.issn:0438-1157.2006.02.005
    [25] Kondo S, Ishikawa T, Abe I, et al. Adsorption Science. 2nd Ed. Translated by Li G X. Beijing: Chemical Industry Press, 2006

    近藤精一, 石川達雄, 安部郁夫. 吸附科學. 2版. 李國希, 譯. 北京: 化學工業出版社, 2006
    [26] Yamashita R, Saito Y, Sakuragawa S. Molecular sieving behavior of carbonized wood: selective adsorption of toluene from a gas mixture containing α-pinene. J Wood Sci, 2009, 55(6): 446 doi: 10.1007/s10086-009-1062-0
  • 加載中
圖(6) / 表(5)
計量
  • 文章訪問數:  1787
  • HTML全文瀏覽量:  394
  • PDF下載量:  82
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-07-25
  • 網絡出版日期:  2020-10-09
  • 刊出日期:  2021-11-25

目錄

    /

    返回文章
    返回