-
摘要: 針對目前鋰離子電池壽命預測結果不準確的問題,提出了一種多模態分解的鋰離子電池組合預測模型,從而學習鋰離子電池退化過程的微小變化。該方法在單一長短期記憶(LSTM)預測模型的基礎上,采用了自適應噪聲完全集成的經驗模態分解(CEEMDAN)算法將鋰電池容量分為主退化趨勢和若干局部退化趨勢,然后使用長短期記憶神經網絡(LSTMNN)算法分別對所分解的若干退化數據進行壽命預測,最后將若干預測結果進行有效集成。結果表明,所提出的CEEMDAN?LSTM鋰離子電池組合預測模型最大平均絕對百分比誤差不超過1.5%,平均相對誤差在3%以內,且優于其他預測模型。
-
關鍵詞:
- 電池健康管理 /
- 鋰離子電池 /
- 剩余使用壽命 /
- 長短期記憶神經網絡 /
- 自適應噪聲完全集成經驗模態分解
Abstract: As a new generation of new energy battery, lithium-ion battery is widely used in various fields, including electronic products, electric vehicles, and power supply, due to its advantages of high energy density, light weight, long cycle life, small self-discharge, no memory effect, and no pollution. With the wide application of lithium-ion battery, numerous research on its performance has been done, including its health assessment as one of the hot spots. Repeated charging and discharging of a lithium-ion battery that was run under full charge state results to internal irreversible chemical changes leading to a fall in the maximum available capacity. Specifically, a decline to 70%–80% of the rated capacity results in lithium-ion battery failure. Battery failure may lead to electrical equipment damage, resulting in safety accidents. Therefore, it is of great significance to predict the remaining usable life of lithium-ion battery for improving system reliability. In this paper, a combination prediction model for lithium-ion batteries with multimode decomposition was presented based on the long and short-term memory (LSTM) prediction model to learn about small changes in its degradation process. A complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) algorithm was used to divide the capacity into main degradation trend and some local degradation trend. Long Short-Term Memory Neural Network (LSTMNN) algorithm was then introduced to perform the capacity prediction of decomposed degradation data. Finally, some prediction results were integrated effectively. The maximum mean absolute percentage error (MAPE) of the proposed CEEMDAN–LSTM lithium-ion battery combination prediction model does not exceed 1.5%. The average relative error is less than 3%, which is better than the other prediction model. -
表 1 LiCoO2電池詳細參數
Table 1. LiCoO2 battery details
Battery Anode and cathode materials Size /mm Weight /g CS LiCoO2 cathode/graphite anode 5.4×33.6×50.6 21.1 CX LiCoO2 cathode/graphite anode 6.6×33.8×50 28 表 2 LSTM預測模型參數設置
Table 2. LSTM prediction model parameter setting
Number of iterations Number of hidden layers Number of hidden cells Initial learning rate 500 1 200 0.002 表 3 50%訓練集鋰電池壽命預測誤差
Table 3. Lithium battery life prediction error under 50% training set
Model Battery RULtr RULpr RULer Per LSTM CS33 198 201 3 0.0152 CS34 176 269 93 0.5284 CS37 167 169 2 0.0120 CS38 201 223 22 0.1095 CX36 191 192 1 0.0076 CX37 224 227 3 0.0134 EMD–LSTM CS33 198 198 0 0 CS34 176 183 7 0.0398 CS37 167 169 2 0.0114 CS38 201 222 21 0.1045 CX36 191 192 1 0.0062 CX37 224 225 1 0.0045 CEEMDAN–
LSTMCS33 198 197 1 0.0051 CS34 176 176 0 0 CS37 167 171 4 0.0239 CS38 201 223 22 0.1095 CX36 191 192 1 0.0062 CX37 224 224 0 0 表 4 30%訓練集鋰電池壽命預測誤差
Table 4. Lithium battery life prediction error under 30% training set
Model Battery RULtr RULpr RULer Per LSTM CS33 323 346 23 0.0712 CS34 301 325 24 0.0797 CS37 347 527 180 0.5187 CS38 381 408 27 0.0709 CX36 381 385 4 0.0105 CX37 414 419 5 0.0121 EMD–LSTM CS33 323 324 1 0.0031 CS34 301 304 3 0.0100 CS37 347 354 7 0.2018 CS38 381 408 27 0.0708 CX36 381 430 49 0.1286 CX37 414 414 0 0 CEEMDAN–
LSTMCS33 323 323 0 0 CS34 301 309 8 0.0266 CS37 347 353 6 0.0173 CS38 381 406 25 0.0656 CX36 381 376 5 0.0131 CX37 414 414 0 0 表 5 不同算法預測精度
Table 5. Prediction accuracy of different algorithms
Battery Training proportion/% algorithm RMSE/
(A·h)MAPE MAE/
(A·h)CS33 50 BP 0.1471 0.1649 0.1043 ELM 0.0650 0.0626 0.0367 SVR 0.0297 0.0304 0.0244 CEEMDAN–LSTM 0.0120 0.0123 0.0077 CS33 30 BP 0.1727 0.1794 0.1172 ELM 0.1216 0.1244 0.0805 SVR 0.0708 0.0726 0.0692 CEEMDAN–LSTM 0.0327 0.0312 0.0200 www.77susu.com -
參考文獻
[1] Li L B, Ji L, Zhu Y Z, et al. Investigation of RUL prediction of lithium-ion battery equivalent cycle battery pack. Chin J Eng, 2020, 42(6): 796李練兵, 季亮, 祝亞尊, 等. 等效循環電池組剩余使用壽命預測. 工程科學學報, 2020, 42(6):796 [2] Liu D T, Zhou J B, Liao H T, et al. A health indicator extraction and optimization framework for lithium-ion battery degradation modeling and prognostics. IEEE Trans Syst Man Cybern:Syst, 2015, 45(6): 915 doi: 10.1109/TSMC.2015.2389757 [3] Pan H P, Lv Z Q, Fu B, et al. Online estimation of lithium-ion battery’s state of health using extreme learning machine. Automot Eng, 2017, 39(12): 1375潘海鴻, 呂治強, 付兵, 等. 采用極限學習機實現鋰離子電池健康狀態在線估算. 汽車工程, 2017, 39(12):1375 [4] Xiong R. Battery Management Algorithm for Electric Vehicles. Beijing: China Machine Press, 2020 [5] Zhu J, Tan T X, Wu L F, et al. RUL prediction of lithium-ion battery based on improved DGWO–ELM method in a random discharge rates environment. IEEE Access, 2019, 7: 125176 doi: 10.1109/ACCESS.2019.2936822 [6] Chen L, Chen J, Wang H M, et al. Prediction of battery remaining useful life based on wavelet packet energy entropy. Trans China Electrotech Soc, 2020, 35(8): 1827陳琳, 陳靜, 王惠民, 等. 基于小波包能量熵的電池剩余壽命預測. 電工技術學報, 2020, 35(8):1827 [7] Zhang Y Z, Xiong R, He H W, et al. Lithium-ion battery remaining useful life prediction with Box-Cox transformation and Monte Carlo simulation. IEEE Trans Ind Electron, 2019, 66(2): 1585 doi: 10.1109/TIE.2018.2808918 [8] Yun Z H, Qin W H. Remaining useful life estimation of lithium-ion batteries based on optimal time series health indicator. IEEE Access, 2020, 8: 55447 doi: 10.1109/ACCESS.2020.2981947 [9] Park K, Choi Y, Choi W J, et al. LSTM-based battery remaining useful life prediction with multi-channel charging profiles. IEEE Access, 2020, 8: 20786 doi: 10.1109/ACCESS.2020.2968939 [10] Zhang Y Z, Xiong R, He H W, et al. Long short-term memory recurrent neural network for remaining useful life prediction of lithium-ion batteries. IEEE Trans Veh Technol, 2018, 67(7): 5695 doi: 10.1109/TVT.2018.2805189 [11] Wei H Y, An J J, Chen J, et al. RUL prediction of lithium-ion battery based on improved particle filtering algorithm. Automot Eng, 2019, 41(12): 1377韋海燕, 安晶晶, 陳靜, 等. 基于改進粒子濾波算法實現鋰離子電池RUL預測. 汽車工程, 2019, 41(12):1377 [12] Yu J B. State of health prediction of lithium-ion batteries: Multiscale logic regression and Gaussian process regression ensemble. Reliab Eng Syst Saf, 2018, 174: 82 doi: 10.1016/j.ress.2018.02.022 [13] Zhou Y P, Huang M H. Lithium-ion batteries remaining useful life prediction on a mixture of empirical mode decomposition and ARIMA model. Microelectron Reliab, 2016, 65: 265 doi: 10.1016/j.microrel.2016.07.151 [14] Li X Y, Zhang L, Wang Z P, et al. Remaining useful life prediction for lithium-ion batteries based on a hybrid model combining the long short-term memory and Elman neural networks. J Energy Storage, 2019, 21: 510 doi: 10.1016/j.est.2018.12.011 [15] Sayah M, Guebli D, Al Masry Z, et al. Robustness testing framework for RUL prediction Deep LSTM networks. ISA Trans, https://doi.org/10.1016/j.isatra.2020.07.003 [16] Wang C S, Lu N Y, Wang S L, et al. Dynamic long short-term memory neural-network-based indirect remaining-useful-life prognosis for satellite lithium-ion battery. Appl Sci, 2018, 8(11): 2078 doi: 10.3390/app8112078 [17] Bruneo D, De Vita F. On the use of LSTM networks for predictive maintenance in smart industries // 2019 IEEE International Conference on Smart Computing (SMARTCOMP). Washington, 2019: 241 [18] Yan H R, Qin Y, Xiang S, et al. Long-term gear life prediction based on ordered neurons LSTM neural networks. Measurement, 2020, 165: 108205 doi: 10.1016/j.measurement.2020.108205 [19] Hu T Z, Yu J B. Life prediction of lithium-ion batteries based on multiscale decomposition and deep learning. J Zhejiang Univ Eng Sci, 2019, 53(10): 1852胡天中, 余建波. 基于多尺度分解和深度學習的鋰電池壽命預測. 浙江大學學報: 工學版, 2019, 53(10):1852 [20] Zhang C L, He Y G, Yuan L F. Prediction approach for remaining useful life of lithium-ion battery based on EEMD and MKRVM. Proc CSU–EPSA, 2018, 30(7): 38 doi: 10.3969/j.issn.1003-8930.2018.07.006張朝龍, 何怡剛, 袁莉芬. 基于EEMD和MKRVM的鋰電池剩余壽命預測方法. 電力系統及其自動化學報, 2018, 30(7):38 doi: 10.3969/j.issn.1003-8930.2018.07.006 [21] Qi H M. Research on Prediction Method of Remaining Life of Lithium Battery Based on Deep Learning [Dissertation]. Harbin: Harbin Institute of Technology, 2019齊昊明. 基于深度學習的鋰電池剩余壽命預測方法研究[學位論文]. 哈爾濱: 哈爾濱工業大學, 2019 [22] Li J L, Li X Y, He D. A directed acyclic graph network combined with CNN and LSTM for remaining useful life prediction. IEEE Access, 2019, 7: 75464 doi: 10.1109/ACCESS.2019.2919566 [23] Zhou Y T, Huang Y N, Pang J B, et al. Remaining useful life prediction for supercapacitor based on long short-term memory neural network. J Power Sources, 2019, 440: 227149 doi: 10.1016/j.jpowsour.2019.227149 [24] Yu Y, Hu C H, Si X S, et al. Averaged Bi–LSTM networks for RUL prognostics with non-life-cycle labeled dataset. Neurocomputing, 2020, 402: 134 doi: 10.1016/j.neucom.2020.03.041 [25] Yang F F, Zhang S H, Li W H, et al. State of charge estimation of lithium-ion batteries using LSTM and UKF. Energy, 2020, 201: 117664 doi: 10.1016/j.energy.2020.117664 [26] Liu J, Chen Z Q, Huang D Y, et al. Remaining useful life of lithium-ion batteries based on time interval of equal charging voltage difference. J Shanghai Jiaotong Univ, 2019, 53(9): 1058劉健, 陳自強, 黃德揚, 等. 基于等壓差充電時間的鋰離子電池壽命預測. 上海交通大學學報, 2019, 53(9):1058 -