<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

基于CEEMDAN–LSTM組合的鋰離子電池壽命預測方法

史永勝 施夢琢 丁恩松 洪元濤 歐陽

史永勝, 施夢琢, 丁恩松, 洪元濤, 歐陽. 基于CEEMDAN–LSTM組合的鋰離子電池壽命預測方法[J]. 工程科學學報, 2021, 43(7): 985-994. doi: 10.13374/j.issn2095-9389.2020.06.30.007
引用本文: 史永勝, 施夢琢, 丁恩松, 洪元濤, 歐陽. 基于CEEMDAN–LSTM組合的鋰離子電池壽命預測方法[J]. 工程科學學報, 2021, 43(7): 985-994. doi: 10.13374/j.issn2095-9389.2020.06.30.007
SHI Yong-sheng, SHI Meng-zhuo, DING En-song, HONG Yuan-tao, OU Yang. Combined prediction method of lithium-ion battery life based on CEEMDAN–LSTM[J]. Chinese Journal of Engineering, 2021, 43(7): 985-994. doi: 10.13374/j.issn2095-9389.2020.06.30.007
Citation: SHI Yong-sheng, SHI Meng-zhuo, DING En-song, HONG Yuan-tao, OU Yang. Combined prediction method of lithium-ion battery life based on CEEMDAN–LSTM[J]. Chinese Journal of Engineering, 2021, 43(7): 985-994. doi: 10.13374/j.issn2095-9389.2020.06.30.007

基于CEEMDAN–LSTM組合的鋰離子電池壽命預測方法

doi: 10.13374/j.issn2095-9389.2020.06.30.007
基金項目: 國家自然科學基金資助項目(61871259)
詳細信息
    通訊作者:

    E-mail:84770540@qq.com

  • 中圖分類號: TM912

Combined prediction method of lithium-ion battery life based on CEEMDAN–LSTM

More Information
  • 摘要: 針對目前鋰離子電池壽命預測結果不準確的問題,提出了一種多模態分解的鋰離子電池組合預測模型,從而學習鋰離子電池退化過程的微小變化。該方法在單一長短期記憶(LSTM)預測模型的基礎上,采用了自適應噪聲完全集成的經驗模態分解(CEEMDAN)算法將鋰電池容量分為主退化趨勢和若干局部退化趨勢,然后使用長短期記憶神經網絡(LSTMNN)算法分別對所分解的若干退化數據進行壽命預測,最后將若干預測結果進行有效集成。結果表明,所提出的CEEMDAN?LSTM鋰離子電池組合預測模型最大平均絕對百分比誤差不超過1.5%,平均相對誤差在3%以內,且優于其他預測模型。

     

  • 圖  1  LSTM總體結構圖

    Figure  1.  LSTM structure diagram

    圖  2  組合模型預測框圖

    Figure  2.  Block diagram of combination prediction model

    圖  3  鋰離子電池容量衰減數據。(a)CS33、CS34;(b)CS37、CS38、CX36、CX37

    Figure  3.  Capacity degradation data of lithium-ion batteries: (a) CS33, CS34; (b) CS37, CS38, CX36, CX37

    圖  4  基于CEEMDAN的CS33容量序列分解

    Figure  4.  CS33 capacity sequence decomposition based on CEEMDAN

    圖  5  CS33兩種算法重構誤差對比

    Figure  5.  Comparison of reconstruction errors between two algorithms

    圖  6  50%訓練集電池預測結果。(a)CS33;(b)CS34;(c)CS37;(d)CS38;(e)CX36;(f)CX37

    Figure  6.  Battery prediction results under 50% training set: (a) CS33; (b) CS34; (c) CS37; (d) CS38; (e) CX36; (f) CX37

    圖  7  相對誤差曲線(a)CS33;(b)CS34;(c)CS37;(d)CS38;(e)CX36;(f)CX37

    Figure  7.  Relative error curve: (a) CS33; (b) CS34; (c) CS37; (d) CS38; (e) CX36; (f) CX37

    圖  8  50%訓練集電池預測誤差。(a)CS33;(b)CS34;(c)CS37;(d)CS38;(e)CX36;(f)CX37

    Figure  8.  Battery prediction error under 50% training set: (a) CS33; (b) CS34; (c) CS37; (d) CS38; (e) CX36; (f) CX37

    圖  9  30%訓練集鋰離子電池預測結果。(a)CS33;(b)CS34;(c)CS37;(d)CS38;(e)CX36;(f)CX37

    Figure  9.  Battery prediction error under under 30% training set: (a) CS33; (b) CS34; (c) CS37; (d) CS38; (e) CX36; (f) CX37

    圖  10  30%訓練集電池預測誤差。(a)CS33;(b)CS34;(c)CS37;(d)CS38;(e)CX36;(f)CX37

    Figure  10.  Battery prediction error under 30% training set: (a) CS33; (b) CS34; (c) CS37; (d) CS38; (e) CX36; (f) CX37

    表  1  LiCoO2電池詳細參數

    Table  1.   LiCoO2 battery details

    BatteryAnode and cathode materialsSize /mmWeight /g
    CSLiCoO2 cathode/graphite anode5.4×33.6×50.621.1
    CXLiCoO2 cathode/graphite anode6.6×33.8×5028
    下載: 導出CSV

    表  2  LSTM預測模型參數設置

    Table  2.   LSTM prediction model parameter setting

    Number of iterationsNumber of hidden layersNumber of hidden cellsInitial learning rate
    50012000.002
    下載: 導出CSV

    表  3  50%訓練集鋰電池壽命預測誤差

    Table  3.   Lithium battery life prediction error under 50% training set

    ModelBatteryRULtrRULprRULerPer
    LSTMCS3319820130.0152
    CS34176269930.5284
    CS3716716920.0120
    CS38201223220.1095
    CX3619119210.0076
    CX3722422730.0134
    EMD–LSTMCS3319819800
    CS3417618370.0398
    CS3716716920.0114
    CS38201222210.1045
    CX3619119210.0062
    CX3722422510.0045
    CEEMDAN–
    LSTM
    CS3319819710.0051
    CS3417617600
    CS3716717140.0239
    CS38201223220.1095
    CX3619119210.0062
    CX3722422400
    下載: 導出CSV

    表  4  30%訓練集鋰電池壽命預測誤差

    Table  4.   Lithium battery life prediction error under 30% training set

    ModelBatteryRULtrRULprRULerPer
    LSTMCS33323346230.0712
    CS34301325240.0797
    CS373475271800.5187
    CS38381408270.0709
    CX3638138540.0105
    CX3741441950.0121
    EMD–LSTMCS3332332410.0031
    CS3430130430.0100
    CS3734735470.2018
    CS38381408270.0708
    CX36381430490.1286
    CX3741441400
    CEEMDAN–
    LSTM
    CS3332332300
    CS3430130980.0266
    CS3734735360.0173
    CS38381406250.0656
    CX3638137650.0131
    CX3741441400
    下載: 導出CSV

    表  5  不同算法預測精度

    Table  5.   Prediction accuracy of different algorithms

    BatteryTraining proportion/%algorithmRMSE/
    (A·h)
    MAPEMAE/
    (A·h)
    CS3350BP0.14710.16490.1043
    ELM0.06500.06260.0367
    SVR0.02970.03040.0244
    CEEMDAN–LSTM0.01200.01230.0077
    CS3330BP0.17270.17940.1172
    ELM0.12160.12440.0805
    SVR0.07080.07260.0692
    CEEMDAN–LSTM0.03270.03120.0200
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Li L B, Ji L, Zhu Y Z, et al. Investigation of RUL prediction of lithium-ion battery equivalent cycle battery pack. Chin J Eng, 2020, 42(6): 796

    李練兵, 季亮, 祝亞尊, 等. 等效循環電池組剩余使用壽命預測. 工程科學學報, 2020, 42(6):796
    [2] Liu D T, Zhou J B, Liao H T, et al. A health indicator extraction and optimization framework for lithium-ion battery degradation modeling and prognostics. IEEE Trans Syst Man Cybern:Syst, 2015, 45(6): 915 doi: 10.1109/TSMC.2015.2389757
    [3] Pan H P, Lv Z Q, Fu B, et al. Online estimation of lithium-ion battery’s state of health using extreme learning machine. Automot Eng, 2017, 39(12): 1375

    潘海鴻, 呂治強, 付兵, 等. 采用極限學習機實現鋰離子電池健康狀態在線估算. 汽車工程, 2017, 39(12):1375
    [4] Xiong R. Battery Management Algorithm for Electric Vehicles. Beijing: China Machine Press, 2020
    [5] Zhu J, Tan T X, Wu L F, et al. RUL prediction of lithium-ion battery based on improved DGWO–ELM method in a random discharge rates environment. IEEE Access, 2019, 7: 125176 doi: 10.1109/ACCESS.2019.2936822
    [6] Chen L, Chen J, Wang H M, et al. Prediction of battery remaining useful life based on wavelet packet energy entropy. Trans China Electrotech Soc, 2020, 35(8): 1827

    陳琳, 陳靜, 王惠民, 等. 基于小波包能量熵的電池剩余壽命預測. 電工技術學報, 2020, 35(8):1827
    [7] Zhang Y Z, Xiong R, He H W, et al. Lithium-ion battery remaining useful life prediction with Box-Cox transformation and Monte Carlo simulation. IEEE Trans Ind Electron, 2019, 66(2): 1585 doi: 10.1109/TIE.2018.2808918
    [8] Yun Z H, Qin W H. Remaining useful life estimation of lithium-ion batteries based on optimal time series health indicator. IEEE Access, 2020, 8: 55447 doi: 10.1109/ACCESS.2020.2981947
    [9] Park K, Choi Y, Choi W J, et al. LSTM-based battery remaining useful life prediction with multi-channel charging profiles. IEEE Access, 2020, 8: 20786 doi: 10.1109/ACCESS.2020.2968939
    [10] Zhang Y Z, Xiong R, He H W, et al. Long short-term memory recurrent neural network for remaining useful life prediction of lithium-ion batteries. IEEE Trans Veh Technol, 2018, 67(7): 5695 doi: 10.1109/TVT.2018.2805189
    [11] Wei H Y, An J J, Chen J, et al. RUL prediction of lithium-ion battery based on improved particle filtering algorithm. Automot Eng, 2019, 41(12): 1377

    韋海燕, 安晶晶, 陳靜, 等. 基于改進粒子濾波算法實現鋰離子電池RUL預測. 汽車工程, 2019, 41(12):1377
    [12] Yu J B. State of health prediction of lithium-ion batteries: Multiscale logic regression and Gaussian process regression ensemble. Reliab Eng Syst Saf, 2018, 174: 82 doi: 10.1016/j.ress.2018.02.022
    [13] Zhou Y P, Huang M H. Lithium-ion batteries remaining useful life prediction on a mixture of empirical mode decomposition and ARIMA model. Microelectron Reliab, 2016, 65: 265 doi: 10.1016/j.microrel.2016.07.151
    [14] Li X Y, Zhang L, Wang Z P, et al. Remaining useful life prediction for lithium-ion batteries based on a hybrid model combining the long short-term memory and Elman neural networks. J Energy Storage, 2019, 21: 510 doi: 10.1016/j.est.2018.12.011
    [15] Sayah M, Guebli D, Al Masry Z, et al. Robustness testing framework for RUL prediction Deep LSTM networks. ISA Trans, https://doi.org/10.1016/j.isatra.2020.07.003
    [16] Wang C S, Lu N Y, Wang S L, et al. Dynamic long short-term memory neural-network-based indirect remaining-useful-life prognosis for satellite lithium-ion battery. Appl Sci, 2018, 8(11): 2078 doi: 10.3390/app8112078
    [17] Bruneo D, De Vita F. On the use of LSTM networks for predictive maintenance in smart industries // 2019 IEEE International Conference on Smart Computing (SMARTCOMP). Washington, 2019: 241
    [18] Yan H R, Qin Y, Xiang S, et al. Long-term gear life prediction based on ordered neurons LSTM neural networks. Measurement, 2020, 165: 108205 doi: 10.1016/j.measurement.2020.108205
    [19] Hu T Z, Yu J B. Life prediction of lithium-ion batteries based on multiscale decomposition and deep learning. J Zhejiang Univ Eng Sci, 2019, 53(10): 1852

    胡天中, 余建波. 基于多尺度分解和深度學習的鋰電池壽命預測. 浙江大學學報: 工學版, 2019, 53(10):1852
    [20] Zhang C L, He Y G, Yuan L F. Prediction approach for remaining useful life of lithium-ion battery based on EEMD and MKRVM. Proc CSU–EPSA, 2018, 30(7): 38 doi: 10.3969/j.issn.1003-8930.2018.07.006

    張朝龍, 何怡剛, 袁莉芬. 基于EEMD和MKRVM的鋰電池剩余壽命預測方法. 電力系統及其自動化學報, 2018, 30(7):38 doi: 10.3969/j.issn.1003-8930.2018.07.006
    [21] Qi H M. Research on Prediction Method of Remaining Life of Lithium Battery Based on Deep Learning [Dissertation]. Harbin: Harbin Institute of Technology, 2019

    齊昊明. 基于深度學習的鋰電池剩余壽命預測方法研究[學位論文]. 哈爾濱: 哈爾濱工業大學, 2019
    [22] Li J L, Li X Y, He D. A directed acyclic graph network combined with CNN and LSTM for remaining useful life prediction. IEEE Access, 2019, 7: 75464 doi: 10.1109/ACCESS.2019.2919566
    [23] Zhou Y T, Huang Y N, Pang J B, et al. Remaining useful life prediction for supercapacitor based on long short-term memory neural network. J Power Sources, 2019, 440: 227149 doi: 10.1016/j.jpowsour.2019.227149
    [24] Yu Y, Hu C H, Si X S, et al. Averaged Bi–LSTM networks for RUL prognostics with non-life-cycle labeled dataset. Neurocomputing, 2020, 402: 134 doi: 10.1016/j.neucom.2020.03.041
    [25] Yang F F, Zhang S H, Li W H, et al. State of charge estimation of lithium-ion batteries using LSTM and UKF. Energy, 2020, 201: 117664 doi: 10.1016/j.energy.2020.117664
    [26] Liu J, Chen Z Q, Huang D Y, et al. Remaining useful life of lithium-ion batteries based on time interval of equal charging voltage difference. J Shanghai Jiaotong Univ, 2019, 53(9): 1058

    劉健, 陳自強, 黃德揚, 等. 基于等壓差充電時間的鋰離子電池壽命預測. 上海交通大學學報, 2019, 53(9):1058
  • 加載中
圖(10) / 表(5)
計量
  • 文章訪問數:  3399
  • HTML全文瀏覽量:  1075
  • PDF下載量:  190
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-06-30
  • 網絡出版日期:  2020-09-24
  • 刊出日期:  2021-07-01

目錄

    /

    返回文章
    返回